20 resultados para asymptomatic infection
Resumo:
We evaluated the ability of dogs naturally infected with Leishmania (Leishmania) infantum chagasi to transfer the parasite to the vector and the factors associated with transmission. Thirty-eight infected dogs were confirmed to be infected by direct observation of Leishmania in lymph node smears. Dogs were grouped according to external clinical signs and laboratory data into symptomatic (n= 24) and asymptomatic (n= 14) animals. All dogs were sedated and submitted to xenodiagnosis with F1-laboratory-reared Lutzomyia longipalpis. After blood digestion, sand flies were dissected and examined for the presence of promastigotes. Following canine euthanasia, fragments of skin, lymph nodes, and spleen were collected and processed using immunohistochemistry to evaluate tissue parasitism. Specific antibodies were detected using an enzyme-linked immunosorbent assay. Antibody levels were found to be higher in symptomatic dogs compared to asymptomatic dogs (p= 0.0396). Both groups presented amastigotes in lymph nodes, while skin parasitism was observed in only 58.3% of symptomatic and in 35.7% of asymptomatic dogs. Parasites were visualized in the spleens of 66.7% and 71.4% of symptomatic and asymptomatic dogs, respectively. Parasite load varied from mild to intense, and was not significantly different between groups. All asymptomatic dogs except for one (93%) were competent to transmit Leishmania to the vector, including eight (61.5%) without skin parasitism. Sixteen symptomatic animals (67%) infected sand flies; six (37.5%) showed no amastigotes in the skin. Skin parasitism was not crucial for the ability to infect Lutzomyia longipalpis but the presence of Leishmania in lymph nodes was significantly related to a positive xenodiagnosis. Additionally, a higher proportion of infected vectors that fed on asymptomatic dogs was observed (p= 0.0494). Clinical severity was inversely correlated with the infection rate of sand flies (p= 0.027) and was directly correlated with antibody levels (p= 0.0379). Age and gender did not influence the transmissibility. Our data show that asymptomatic dogs are highly infective and competent for establishing sand fly infection, indicating their role in maintaining L. (L.) infantum chagasi cycle as well as their involvement in VL spreading in endemic areas. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dengue virus (DENV) is an enveloped RNA virus that is mosquito-transmitted and can infect a variety of immune and non-immune cells. Response to infection ranges from asymptomatic disease to a severe disorder known as dengue hemorrhagic fever. Despite efforts to control the disease, there are no effective treatments or vaccines. In our search for new antiviral compounds to combat infection by dengue virus type 1 (DENV-1), we investigated the role of galectin-1, a widely-expressed mammalian lectin with functions in cell-pathogen interactions and immunoregulatory properties. We found that DENV-1 infection of cells in vitro exhibited caused decreased expression of Gal-1 in several different human cell lines, suggesting that loss of Gal-1 is associated with virus production. In test of this hypothesis we found that exogenous addition of human recombinant Gal-1 (hrGal-1) inhibits the virus production in the three different cell types. This inhibitory effect was dependent on hrGal-1 dimerization and required its carbohydrate recognition domain. Importantly, the inhibition was specific for hrGal-1, since no effect was observed using recombinant human galectin-3. Interestingly, we found that hrGal-1 directly binds to dengue virus and acts, at least in part, during the early stages of DENV-1 infection, by inhibiting viral adsorption and its internalization to target cells. To test the in vivo role of Gal-1 in DENV infection, Gal-1-deficient-mice were used to demonstrate that the expression of endogenous Galectin-1 contributes to resistance of macrophages to in vitro-infection with DENV-1 and it is also important to physiological susceptibility of mice to in vivo infection with DENV-1. These results provide novel insights into the functions of Gal-1 in resistance to DENV infection and suggest that Gal-1 should be explored as a potential antiviral compound.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Hookworms are parasitic nematodes that cause anemia and intestinal infections in dogs, especially with large worm burdens. However, the serum protein profile of this parasitological disease is still poorly understood. The present study was design to evaluate 80 asymptomatic dogs (age; 8 months–2 years) to detect the presence of the hookworm thin-shelled, morulated eggs in faeces using faecal flotation and to evaluate the serum protein fractions determined by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Forty dogs had an elevated quantity of eggs in faeces (+++) (PD) and 40 dogs were healthy (HD). Infected dogs showed significant increases for IgG estimated concentrations (PD 1.79±0.8 g/dL and HD 1.44±0.72 g/dL, p= 0.04), for ceruloplasmin estimated concentrations (PD 19±15 mg/dL and HD 5±3.5 mg/dL, p=0.0001), for alpha 1-acid glycoprotein estimated concentrations (PD 31.4±17.9 mg/dL and HD 13.5±12.1 mg/dL, p=0.0001) and for a non-identified protein of 23 kDa estimated concentrations (PD 641.5±194.9 mg/dL and HD 519.8± 197.9 mg/dL, p=0.007). Dogs with hookworm infection showed significant differences in the serum protein profile when compared to healthy animals.