107 resultados para advanced oxidation process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photo-Fenton process using potassium ferrioxalate as a mediator was investigated for the photodegradation of dichloracetic acid (DCA) and 2,4-dichlorophenol (DCP) in aqueous medium using solar light as source of irradiation. The influence of the solution depth, the light intensity and the effect of stirring the solution during irradiation process were evaluated using DCA as a model compound. A negligible influence of stirring the solution was observed when the concentration of ferrioxalate (FeOx) was 0.8 mM and solution depth was 4.5 or 14 cm. The optimum FeOx concentration determined for solution depths between 4.5 and 14 cm was 0.8 mM considering total organic carbon (TOC) removal during DCA irradiation. The high efficiency of the photo-Fenton process was demonstrated on summer days, when only 10 min of exposition (around noon) were sufficient to completely destroy the organic carbon of a 1.0 mM DCA solution in the presence of 0.8 mM FeOx and 6.0 mM H2O2 using a solution depth of 4.5 cm. It was observed that the photodegradation efficiency increases linearly with the solar light intensity up to values around 15 Wm-2 but this linear relationship does not hold above this value showing a square root dependence. The photodegradation of a solution of DCP/FeOx showed a lower TOC removal rate than that observed for DCA/FeOx, achieving ∼90% after 35 min irradiation under 19 Wm-2, while under this light intensity, the same TOC removal of DCA/FeOx was achieved in only 10 min irradiation. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study reports the photodegradation of 4-chlorophenol (4-CP) in aqueous solution by the photo-Fenton process using solar irradiation. The influence of solution path length, and Fe(NO3)(3) and H2O2 concentrations on the degradation of 4-CP is evaluated by response surface methodology. The degradation process was monitored by the removal of total organic carbon (TOC) and the release of chloride ion. The results showed a very important role of iron concentration either for TOC removal or dechlorination. on the other hand, a negative effect of increasing solution path length on mineralization was observed, which can be compensated by increasing the iron concentration. This permits an adjustment of the iron concentration according to the irradiation exposure area and path length (depth of a tank reactor). Under optimum conditions of 1.5 mM Fe(NO3)(3), 20.0 mM H2O2 and 4.5 cm solution path length, 17 min irradiation under solar light were sufficient to reduce a 72 mg C L-1 solution of 4-CP by 91 (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review focuses on the heterogeneous photocatalytic treatment of organic dyes in air and water. Representative studies spanning approximately three decades are included in this review. These studies have mostly used titanium dioxide (TiO2) as the inorganic semiconductor photocatalyst of choice for decolorizing and decomposing the organic dye to mineralized products. Other semiconductors such as ZnO, CdS, WO3, and Fe2O3 have also been used, albeit to a much smaller extent. The topics covered include historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H2O2, ozonation, UV/O3, Fenton and photo-Fenton reactions), visible light-induced dye decomposition by sensitization mechanism, reaction intermediates and toxicity issues, and real-world process scenarios. © 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new vanadium (IV) complex with the monoanion of 2,3-dihydroxypyridine (H(2)dhp), or 3-hydroxy-2(1H)-pyridone, was synthesized, characterized by physicochemical techniques and tested biologically. The EPR data for the [VO(Hdhp)(2)] complex in DMF are: g(x) = 1.9768, g(y) = 1.9768 and g(z) = 1.9390; A values (10(-4) cm(-1)): A(x), 59.4; A(y//), 59.4; A(z), 171.0. The vV=O band in the IR spectrum of the complex is at 986 cm(-1). The complex is paramagnetic, with mu(eff) = 1.65 BM (d(1), spin-only) at 25 degrees C. The irreversible oxidation process [V(V)/V(IV)] of the [VO(Hdhp)(2)] complex, as revealed in a cyclic voltammogram, occurs at 876 mV. The calculated molecular structure of [VO(Hdhp)(2)] shows the vanadium(IV) center in a distorted square pyramidal environment, with the oxo ligand in the apical position and the oxygen donor atoms of the Hdhp ligands in the basal positions. The ability of [VO(Hdhp)(2)] to mimic insulin, and its toxicity to hepato-biliary functions, were investigated in streptozotocin-induced diabetic rats and it was concluded that the length of treatment and the amount of [VO(Hdhp)(2)] administered were effective in reducing experimental diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este estudo visou verificar o efeito da sonoforese com Arnica montana sobre a fase inflamatória aguda de uma lesão muscular. Para isso, 40 ratos Wistar machos, lesados cirurgicamente, foram divididos em 4 grupos: controle (C), 10 ratos lesados e não tratados; grupo ultra-som (US), 10 lesados, tratados com US; grupo ultra-som com arnica (US+A), 10 ratos lesados, tratados com sonoforese de gel de arnica; grupo arnica (A), 10 ratos lesados, tratados com massagem de gel de arnica. O tratamento dos três grupos foi iniciado 24h após a lesão, sendo aplicado uma vez ao dia durante 3 minutos, por três dias. Quatro dias após a lesão, os animais foram sacrificados e o terço médio do músculo tibial anterior lesado foi removido e tratado histologicamente. Os resultados da análise qualitativa mostram que, no grupo C, formou-se um intenso infiltrado de células inflamatórias no espaço intersticial e um processo de regeneração apenas iniciado. Nos grupos US e US+A foi detectado um avançado processo inflamatório, com tecido conjuntivo mais organizado e consistente. No grupo A foi detectada diminuição no número de células inflamatórias e uma desorganização em sua disposição, o que poderia levar a um atraso no processo de regeneração. Conclui-se que os grupos que receberam a aplicação do ultra-som e ultra-som com arnica apresentaram semelhante aceleração do processo inflamatório agudo, sugerindo ineficácia da sonoforese quando comparada à aplicação de apenas ultra-som.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The production of chlorine was investigated in the photoelectrocatalytic oxidation of a chloride-containing solution using a TiO(2) thin-film electrode biased at current density from 5 to 50 mA cm(-2) and illuminated by UV light. Such parameters as chloride concentrations from 0.001 to 0.10 mol L(-1), pH 2-12, and interfering salts were varied in this study in order to determine their effect on this oxidation process. At an optimum condition this photoelectrocatalytic method can produce active chlorine at levels compatible to water disinfections processes using a chloride concentration higher than 0.010 mol L(-1) at a pH of 4 and a current density of 30 mA cm(-2). The method was successfully applied to treat surface water collected from a Brazilian river. After 150 min of photoelectrocatalytic oxidation, we obtained a 90% reduction in total organic carbon removal, a 100% removal of turbidity, a 93% decrease in colour and a chemical oxygen demand (COD) removal of around 96% (N=3). The proposed technology based on photoelectrocatalytic oxidation was also tested in treating 250 mL of a solution containing 0.05 mol L(-1) NaCl and 50 mu g L(-1) of Microcystin aeruginosa. The bacteria is completely removed after 5 min of photoelectrocatalysis following an initial rate constant removal of -0.260 min(-1), suggesting that the present method could be considered as a promising alternative to chlorine-based disinfections. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Low intensity laser therapy has been recommended to support the cutaneous repair; however, so far studies do not have evaluated the tissue response following a single laser treatment. This study investigated the effect of a single laser irradiation on the healing of full-thickness skin lesions in rats.Methods: Forty-eight male rats were randomly divided into three groups. One surgical lesion was created on the back of rats using a punch of 8 mm in diameter. One group was not submitted to any treatment after surgery and it was used as control. Two energy doses from an 830-nm near-infrared diode laser were used immediately post-wounding: 1.3 J cm(-2) and 3 J cm(-2). The laser intensity 53 mW cm(-2) was kept for both groups. Biometrical and histological analyses were accomplished at days 3, 7 and 14 post-wounding.Results: Irradiated lesions presented a more advanced healing process than control group. The dose of 1.3 J cm(-2) leaded to better results. Lesions of the group irradiated with 1.3 J cm(-2) presented faster lesion contraction showing quicker re-epithelization and reformed connective tissue with more organized collagen fibers.Conclusions: Low-intensity laser therapy may accelerate cutaneous wound healing in a rat model even if a single laser treatment is performed. This finding might broaden current treatment regimens. (c) 2007 Elsevier B.V. All rights reserved.