255 resultados para adrenergic receptors


Relevância:

70.00% 70.00%

Publicador:

Resumo:

β-Adrenoreceptor blockade is reported to impair endurance, power output and work capacity in healthy subjects and patients with hypertension. The purpose of this study was to investigate the effect in eighth athletic males of an acute β-adrenergic blockade with propranolol on their individual power output corresponding to a defined lactate minimum (LM). Eight fit males (cyclist or triathlete) performed a protocol to determine the power output corresponding to their individual LM (defined from an incremental exercise test after a rapidly induced exercise lactic acidosis). This protocol was performed twice in a double-blind randomized order by each athlete first ingesting propranolol (80mg) and in a second trial a placebo, 120 minutes respectively prior to the test sequence. The blood lactate concentration obtained 7 minutes after anaerobic exercise (a Wingate test) was significantly lower after acute β-adrenergic blockade (8.6 ± 1.6mM) than under the placebo condition (11.7 ± 1.6mM). The work rate at the LM was lowered from 215.0 ± 18.6 to 184.0 ± 18.6 watts and heart rate at the LM was reduced from 165 ± 1.5 to 132 ± 2.2 beats/minute as a result of the blockade. There was a non-significant correlation (r = 0.29) between the power output at the LM with and without acute β-adrenergic blockade. In conclusion, since the intensity corresponding to the LM is related to aerobic performance, the results of the present study, are able to explain in part, the reduction in aerobic power output produced during β-adrenergic blockade.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, we investigated an interaction between noradrenergic and cholinergic pathways of the medial septal area (MSA) on the control of water intake and urinary electrolyte excretion by means of injection of their respective agonists. Noradrenaline (a nonspecific α-adrenergic agonist) and clonidine (an α2-adrenergic agonist), but not phenylephrine (an α1-adrenergic agonist), induced natriuresis and kaliuresis. α-Adrenergic activation had no effect on the natriuresis and kaliuresis induced by carbachol (a cholinergic agonist) and it inhibited the antinatriuresis and antikaliuresis induced by isoproterenol (a ß-adrenergic agonist). Interactions related to volume excretion are complex. α-Adrenergic activation induced a mild diuresis and inhibited the antidiuresis induced by isoproterenol, but phenylephrine combined with carbachol induced antidiuresis. The water intake induced by carbachol was inhibited by clonidine and noradrenaline, but not phenylephrine. These results show an asymmetry in the interaction between α-adrenergic and cholinergic receptors concerning water intake and electrolyte excretion. © 1992.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incubation of heat-denatured plasma from the rattlesnake Crotalus atrox with trypsin generated a bradykinin (BK) that contained two amino acid substitutions (Arg(1) --> Val and Ser(6) --> Thr) compared with mammalian BK. Bolus intra-arterial injections of synthetic rattlesnake BK (0.01-10 nmol/kg) into the anesthetized rattlesnake, Crotalus durissus terrificus, produced a pronounced and concentration-dependent increase in systemic vascular conductance (Gsys). This caused a fall in systemic arterial blood pressure (Psys) and an increase in blood flow. Heart rate and stroke volume also increased. This primary response was followed by a significant rise in Psys and pronounced tachycardia (secondary response). Pretreatment with N-G-nitro-L-arginine methyl ester reduced the NK-induced systemic vasodilatation, indicating that the effect is mediated through increased NO synthesis. The tachycardia associated with the late primary and secondary response to BK was abolished with propranolol and the systemic vasodilatation produced in the primary phase was also significantly attenuated by pretreatment, indicating that the responses are caused, at least in part, by release of cathecholamines and subsequent stimulation of beta-adrenergic receptors. In contrast, the pulmonary circulation was relatively unresponsive to BK.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

JUSTIFICATIVA E OBJETIVOS: Os fármacos alfa2-agonistas são a cada dia mais utilizados em Anestesiologia, seja como adjuvantes ou como agentes anestésicos únicos. Atualmente, o emprego da dexmedetomidina vem se popularizando devido à sua maior seletividade aos receptores alfa2 e, também, ao seu perfil farmacocinético. O objetivo desta revisão foi fazer uma análise do emprego da dexmedetomidina em neurocirurgia. CONTEÚDO: Além das considerações e revisão da literatura quanto ao emprego da dexmedetomidina especificamente em procedimentos neurocirúrgicos, foi realizada descrição dos efeitos do fármaco nos diversos sistemas do organismo. CONCLUSÕES: A dexmedetomidina tem perfil farmacocinético e farmacodinâmico que favorece seu emprego em diversos procedimentos neurocirúrgicos. A utilização clínica em procedimentos cirúrgicos com craniotomia para pinçamento de aneurisma e remoção de tumores é crescente. Além disso, seu uso em intervenções cirúrgicas funcionais é promissor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peripheral treatment with cholinergic or adrenergic agonists results in salivation and the possibility of synergy between cholinergic and adrenergic efferent mechanisms in the control of salivation has been proposed. Central injections of the cholinergic agonist pilocarpine also induce salivation, while the effects of central injections of noradrenaline (norepinephrine) are not known. Here (a) the effects of intracerebroventricular (icv) injection of noradrenaline on the salivation induced by icv or intraperitoneal (i.p.) injection of pilocarpine and (b) the receptors involved in the effects of central noradrenaline on pilocarpine-induced salivation were investigated. Male Holtzman rats with a stainless-steel guide cannula implanted into the lateral ventricle were used. Rats were anaesthetized with tribromoethanol (200 mg/kg body weight) and saliva was collected on small, preweighed cotton balls inserted into the animal's mouth. Noradrenaline (40, 80 and 160 nmol/l mul) injected icv reduced the salivary secretion induced by pilocarpine (0.5 mumol/l mul) injected icv. Noradrenaline (80 and 160 nmol/l mul) injected icv also reduced the salivation induced by pilocarpine (4 mumol/kg) injected i.p. Previous treatment with the alpha(2)-adrenergic receptor antagonists RX 821002 (40, 80 and 160 nmol/l mul) or yohimbine (160 and 320 nmol/l mul) abolished the inhibitory effect produced by icv injection of noradrenaline on pilocarpine-induced salivation in rats. Prazosin (alpha(1)-adrenergic receptor antagonist) injected icv did not change the effect of noradrenaline on pilocarpine-induced salivation. Prior icv injection of only RX 821002 (80 or 160 nmol/l mul) or yohimbine (320 nmol/l mul) increased pilocarpine-induced salivation. The results show that (1) contrary to its peripheral effects, noradrenaline acting centrally inhibits cholinergic-induced salivation in rats; (2) central mechanisms involving alpha(2)-adrenergic receptors inhibit pilocarpine-induced salivation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our studies have focused on the effect of L-NG-nitroarginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), and L-arginine, the substrate of NOS, on salivary secretion induced by the administration of pilocarpine into the lateral cerebral ventricle (LV) of rats. The present study has also investigated the role of the beta-adrenergic agonists and antagonist injected into LV on the salivary secretion elicited by the injection of pilocarpine into LV. Male Holtzmann rats with a stainless-steel cannula implanted into the LV were used. The amount of salivary secretion was studied over a 7-min period after injection of pilocarpine, isoproterenol, propranolol, salbutamol, salmeterol, L-NAME and L-arginine. The injection of pilocarpine (10, 20, 40, 80 and 160 mug/mul) into LV produced a dose-dependent increase in salivary secretion. The injection of L-NAME (40 mug/mul) into LV alone produced an increase in salivary secretion. The injection of L-NAME into LV previous to the injection of pilocarpine produced an increase in salivary secretion. L-Arginine (30 mug/mul) injected alone into LV produced no change in salivary secretion. L-Arginine injected into LV attenuated pilocarpine-induced salivary secretion. The isoproterenol (40 nmol/mul) injected into LV increased into LV increased the salivary secretion. When injected previous to pilocarpine at a dose of 20 and 40 mug/mul, isoproterenol produced and additive effect on pilocarpine-induced salivary secretion. The 40-nmol/mul dose of propranolol injected alone or previous to pilocarpine into LV attenuated the pilocarpine-induced salivary secretion. The injection of salbutamol (40 nmol/mul), a specific beta-2 agonist, injected alone into LV produced no change in salivary secretion and when injected previous to pilocarpine produced and increase in salivary secretion. The 40-nmol/mul dose of salmeterol, a long-acting beta-2 agonist, injected into LV alone or previous to pilocarpine produced no change in salivary secretion. The results have shown that central injections of L-NAME and L-arginine interfere with the salivary secretion, which implies that might participate in pilocarpine-induced salivary secretion. The interaction between cholinergic and beta-adrenergic receptors of the central nervous system (CNS) for the control of salivary secretion can also be postulated. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The circumventricular structures and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANGII) on water and electrolyte regulation. Several anatomical findings have demonstrated neural connection between circumventricular structures and the LH, the present experiments were conducted to investigate the role of the alpha-adrenergic antagonists and agonistic injected into the LH on the water intake, sodium and potassium excretion elicited by injections of ANGII into the lateral ventricle (LV), the water intake was measured every 30 min over a period of 120 min. The sodium, potassium and urinary volume were measured over a period of 120 min in water-loaded rats. The injection of ANGII into the LV increased the water intake, which was reduced by previous injection of clonidine (an alpha-2-adrenergic agonist) into the LH. The injection of yohimbine (an alpha-2-adrenergic antagonist) and prazosin (an alpha-l-adrenergic antagonist) into the LH, which was done before injecting ANGII into the LV, also reduced the water intake induced by ANGII. The injection of ANGII into the LV reduced the sodium, potassium and urinary volume. Previous treatment with clonidine attenuated the action of ANGII in reducing the sodium, potassium and urinary volume, whereas previous treatment with yohimbine attenuated the effects of ANGII but with less intensity than that caused by clonidine. Previous treatment with prazosin increased the inhibitory effects of ANGII in those parameters. The injection of yohimbine and prazosin, which was done before the injection of clonidine, attenuated the effect of clonidine on the ANGII mechanism. The results of this study led us to postulate that when alpha-2-adrenergic receptors are blocked, the clonidine may act on the imidazoline receptors to produce its effects on the ANGII mechanism. We may also conclude that the LH is involved with circumventricular structures, which present excitatory and inhibitory mechanisms. Such mechanisms are responsible for regulating the renal excretion of sodium, potassium and water, (C) 2000 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Physical exercise promotes beneficial health effects by preventing or reducing the deleterious effects of pathological conditions, such as arterial hypertension, coronary artery disease, atherosclerosis, diabetes mellitus, osteoporosis, Parkinson's disease, and Alzheimer disease. Human movement studies are becoming an emerging science in the epidemiological area and public health. A great number of studies have shown that exercise training, in general, reduces sympathetic activity and/or increases parasympathetic tonus either in human or laboratory animals. Alterations in autonomic nervous system have been correlated with reduction in heart rate (resting bradycardia) and blood pressure, either in normotensive or hypertensive subjects. However, the underlying mechanisms by which physical exercise produce bradycardia and reduces blood pressure has not been fully understood. Pharmacological studies have particularly contributed to the comprehension of the role of receptor and transduction signaling pathways on the heart and blood vessels in response to exercise training. This review summarizes and examines the data from studies using animal models and human to determine the effect of exercise training on the cardiovascular system. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O exercício aeróbio promove efeitos benéficos na prevenção e tratamento de doenças como hipertensão arterial, aterosclerose, insuficiência venosa e doença arterial periférica. Os receptores β-adrenérgicos estão presentes em várias células. No sistema cardiovascular, promovem inotropismo e cronotropismo positivo cardíaco e relaxamento vascular. Embora os efeitos do exercício tenham sido investigados em receptores cardíacos, estudos focados nos vasos são escassos e controversos. Esta revisão abordará os efeitos do exercício físico sobre os receptores β-adrenérgicos vasculares em modelos animais e humanos e os mecanismos celulares envolvidos na resposta relaxante. em geral, os estudos mostram resultantes conflitantes, onde observam diminuição, aumento ou nenhum efeito do exercício físico sobre a resposta relaxante. Assim, os efeitos do exercício na sensibilidade β-adrenérgica vascular merecem maior atenção, e os resultados mostram que a área de fisiopatologia vascular é um campo aberto para a descoberta de novos compostos e avanços na prática clínica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the role of alpha-adrenergic antagonists and clonidine injected into the medial septal area (MSA) on water intake and the decrease in Na+, K+ and urine elicited by ANGII injection into the third ventricle (3rdV). Male Holtzman rats with stainless steel cannulas implanted into the 3rdV and MSA were used. ANGII (12 nmol/µl) increased water intake (12.5 ± 1.7 ml/120 min). Clonidine (20 nmol/µl) injected into the MSA reduced the ANGII-induced water intake (2.9 ± 0.5 ml/120 min). Pretreatment with 80 nmol/µl yohimbine or prazosin into the MSA also reduced the ANGII-induced water intake (3.0 ± 0.4 and 3.1 ± 0.2 ml/120 min, respectively). Yohimbine + prazosin + clonidine injected into the MSA abolished the ANGII-induced water intake (0.2 ± 0.1 and 0.2 ± 0.1 ml/120 min, respectively). ANGII reduced Na+ (23 ± 7 µEq/120 min), K+ (27 ± 3 µEq/120 min) and urine volume (4.3 ± 0.9 ml/120 min). Clonidine increased the parameters above. Clonidine injected into the MSA abolished the inhibitory effect of ANGII on urinary sodium. Yohimbine injected into the MSA also abolished the inhibitory effects of ANGII. Yohimbine + clonidine attenuated the inhibitory effects of ANGII. Prazosin injected into the MSA did not cause changes in ANGII responses. Prazosin + clonidine attenuated the inhibitory effects of ANGII. The results showed that MSA injections of alpha1- and alpha2-antagonists decreased ANGII-induced water intake, and abolished the Na+, K+ and urine decrease induced by ANGII into the 3rdV. These findings suggest the involvement of septal alpha1- and alpha2-adrenergic receptors in water intake and electrolyte and urine excretion induced by central ANGII.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

JUSTIFICATIVA E OBJETIVOS: A utilização das drogas agonistas dos alfa2-adrenoceptores para controlar a pressão arterial e freqüência cardíaca, propiciar menores respostas hemodinâmicas à intubação e extubação traqueal e poupar anestésicos já está difundida na literatura desde a introdução da clonidina. O desenvolvimento de agentes providos de maior seletividade alfa2-adrenoceptora que, por isso, determinam menos efeitos adversos, como a dexmedetomidina, recentemente liberada para utilização clínica, possibilitou que ocorressem maior sedação e analgesia com o seu uso. Despertou-se, então, o interesse em sua utilização como substitutos dos opióides, conhecidos por determinarem potente analgesia e sedação. O objetivo deste trabalho foi comparar a analgesia promovida pela dexmedetomidina e pelo sufentanil, utilizados em infusões contínuas durante anestesias de procedimentos otorrinolaringológicos e de cabeça e pescoço. MÉTODO: Os 60 pacientes estudados foram divididos em dois grupos de 30: G1, recebendo sufentanil e G2, dexmedeto- midina, na indução e manutenção anestésicas. Para a manutenção da anestesia utilizaram-se, também, o óxido nitroso e o propofol, em infusão contínua alvo-controlada. Foram avaliados os parâmetros hemodinâmicos (pressões arteriais sistólica e diastólica e freqüência cardíaca), tempos de despertar e de extubação após interrupção do propofol, locais onde foram extubados os pacientes, sala de operação (SO) ou sala de recuperação pós-anestésica (SRPA), tempo de permanência na SRPA, índice de Aldrete e Kroulik e as complicações apresentadas na SO e SRPA. RESULTADOS: G1 apresentou menores valores de pressões arteriais sistólica, diastólica e freqüência cardíaca, tempos de despertar e extubação maiores, maior número de extubações na SRPA, maior tempo de permanência na SRPA, valores mais baixos para Aldrete e Kroulik na alta da SRPA e mais complicações per e pós-operatórias. CONCLUSÕES: A utilização de dexmedetomidina como analgésico per-operatório apresentou melhores resultados que a de sufentanil, nos procedimentos selecionados neste trabalho, com relação à estabilidade hemodinâmica e às condições de despertar e de recuperação anestésica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The central injection of clonidine (an alpha-2-adrenoceptor agonist) in conscious normotensive rats produces hypertensive responses and bradycardia. The present study was performed to investigate the effect of electrolytic lesions of the lateral hypothalamus (LH) on the pressor and bradycardic responses induced by clonidine injected into the medial septal area (MSA) in conscious and unrestrained rats. Male Holtzman rats weighing 250-300 g were used. Mean arterial pressure and heart rate were recorded in sham- or bilateral LH-lesioned rats with a cerebral stainless steel cannula implanted into the MSA. The injection of clonidine (40 nmol/mu-l) into the MSA of sham rats (N = 8) produced a pressor response (36 +/- 7 mmHg, P<0.05) and bradycardia (-70 +/- 13 bpm, P<0.05) compared to saline. Fourteen days after LH-lesion (N = 9) the pressor response was reduced (9 +/- 10 mmHg, P<0.05) but no change was observed in the bradycardia (-107 +/- 24 bpm). These results show that LH is an important area involved in the pressor response to clonidine injected into the MSA of rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clonidine combined with adrenergic antagonists were injected in the medial septal area in order to characterize the type of receptors involved with its inhibitory effect on 3% NaCl and water intake of sodium-depleted (furosemide + 24 h of removal of ambient sodium) and 30-h water-deprived rats, respectively. The inhibitory effect of clonidine (20 nmol) on need-induced water intake was reduced 50% by an 80-nmol dose of either idazoxan, yohimbine or prazosin. The inhibitory effect of clonidine (30 nmol) on need-induced 3% NaCl intake was completely antagonized by idazoxan (80, 160 nmol), not altered by yohimbine (40-160 nmol), and partially potentiated (40 nmol) or inhibited (160 nmol) by prazosin. Propranolol did not alter the effects of clonidine on either water (80 nmol) or 3% NaCl (40-160 nmol) intake. The results suggest that the inhibitory effects of clonidine on 3% NaCl and water intake are mediated by different types of alpha2-adrenergic receptors. Copyright (C) 1997 Elsevier B.V.