52 resultados para Work stability
Resumo:
The present work analyzed the tetrameric stability of the hemoglobins from the rattlesnake C. durissus terrificus using analytical gel filtration chromatography, SAXS and osmotic stress. We show that the dissociation mechanism proposed for L. miliaris hemoglobin does not apply for these hemoglobins, which constitute stable tetramers even at low concentrations.
Resumo:
In the present work, we study the stability of hypothetical satellites that are coorbital with Enceladus and Mimas. We performed numerical simulations of 50 particles around the triangular Lagrangian equilibrium points of Enceladus and Mimas taking into account the perturbation of Mimas, Enceladus, Tethys, Dione, Titan and the oblateness of Saturn. All particles remain on tadpole orbits after 10 000 yr of integration. Since in the past the orbit of Enceladus and Mimas expanded due to the tidal perturbation, we also simulated the system with Enceladus and Mimas at several different values of semimajor axes. The results show that in general the particles remain on tadpole orbits. The exceptions occur when Enceladus is at semimajor axes that correspond to 6:7, 5:6 and 4:5 resonances with Mimas. Therefore, if Enceladus and Mimas had satellites librating around their Lagrangian triangular points in the past, they would have been removed if Enceladus crossed one of these first-order resonances with Mimas.
Resumo:
The development of new shape memory alloys with high martensitic transformation temperature increases the potential for applications. The development and use of these new alloys depends on the stability of the structure during cycling at high temperatures. If it is possible to guarantee that on alloys keeps the structure during cycling, then the alloy can be used because of the shape memory properties. The aim of this work is to obtain a kinetic model of the forward and backward martensitic transformation of two Cu-Al-Ni-Mn-Ti alloys. Differential scanning calorimetry has been performed in order to establish the kinetic stability of the martensite and the beta transformation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal regime and stability in Jurumirim Reservoir (São Paulo, Brazil) were studied for a year. Isothermy and thermal stratification were observed from June to September and from October to March, respectively. The annual heat budget was 14.0 Kcal . cm-2 and average heat gain per day was 67.2 cal . cm-2 . day-1. Maximum stability and wind work reached 324.2 and 3,037.5 g . cm . cm-2, respectively. According to thermal structure and heat content, Jurumirim Reservoir was classified as a warm tropical monomictic lake.
Resumo:
In this work it was investigated the effect of the exposure to different plasmas on the wettability of silicone samples. We have observed that oxygen. argon, and hydrogen glow discharges are quite effective in reducing the water contact angle of such polymer. However, indifferently to efficiency of the treatment, practically all the modified surfaces recovered great part of their original hydrophobicity. We have investigated this hydrophobic recovery using surface energy measurements and theoretical simulations based on the exponential decay of the population of polar groups on the surface. According to our results such recovery can be attributed to the decrease of polar species at the interface water-polymer surface.
Resumo:
This work presents a new route of preparation of zirconium ceramic foams based on the thermostimulated sol-gel process. This method produces gelled bodies with up to 90% of porosity in the wet gel and can be used to make complex-shaped components. Unfortunately, the shrinkage during the drying step allows to a catastrophic reduction (50%) of the foam porosity. To improve the foam stability we carried out a systematic study of the effect of gel foam aging on the drying process. Samples were aged in closed vessel at 25 C during different time period (from 6 to 240 h). The shrinkage and the mass loss during drying at 50 C were measured in situ, using a non-contact technique performed with a special apparatus. The results show that the total linear shrinkage decreases from 46% to 8% as the aging period increase from 6 to 240 h. This behavior is followed by a small change of total mass loss, from 42 to 54%. It indicates that by aging the structural stiffness of the foams increases due to secondary condensation reactions. Thus, by controlling the aging period, the porosity can be increased from 67 to 75% and the average size of mesopores of dried foams can be screened from 0.3 to 0.9 mum. Finally, these results demonstrate that the thermostimulated sol-gel transition provides a potential route to ceramic foams manufacture.
Resumo:
In this work we present evidence that water molecules are actively involved on the control of binding affinity and binding site discrimination of a drug to natural DNA. In a previous study, the effect of water activity (a(w)) on the energetic parameters of actinomycin-D intercalation to natural DNA was determined using the osmotic stress method (39). This earlier study has shown evidence that water molecules act as an allosteric regulator of ligand binding to DNA via the effect of water activity on the long-range stability of the DNA secondary structure. In this work we have carried out DNA circularization experiments using the plasmid pUC18 in the absence of drugs and in the presence of different neutral solutes to evaluate the contribution of water activity to the energetics of DNA helix unwinding. The contribution of water to these independent reactions were made explicit by the description of how the changes in the free energy of ligand binding to DNA and in the free energy associated with DNA helix torsional deformation are linked to a(w) via changes in structural hydration. Taken together, the results of these studies reveal an extensive linkage between ligand binding affinity and site binding discrimination, and long range helix conformational changes and DNA hydration, This is strong evidence that water molecules work as a classical allosteric regulator of ligand binding to the DNA via its contribution to the stability of the double helix secondary structure, suggesting a possible mechanism by which the biochemical machinery of DNA processing takes advantage of the low activity of water into the cellular milieu.
Resumo:
The elastic-plastic structural stability behaviour of arches is analysed in the present work.The application of the developed mathematical model, allows to determine the elastic-plastic equilibrium paths, looking for critical points, bifurcation or limit, along those paths, associated to the critical load, in case it comes to happen.The equilibrium paths in the elastic-plastic behaviour when compared with the paths in the linear elastic behaviour, may show that, due to influence of the material plasticity, modifications paths appear and consequently alterations in the values of its critical loads.
Resumo:
This work presents the complete set of features for solutions of a particular non-ideal mechanical system near the fundamental and near to a secondary resonance region. The system comprises a pendulum with a horizontally moving suspension point. Its motion is the result of a non-ideal rotating power source (limited power supply), acting oil the Suspension point through a crank mechanism. Main emphasis is given to the loss of stability, which occurs by a sequence of events, including intermittence and crisis, when the system reaches a chaotic attractor. The system also undergoes a boundary-crisis, which presents a different aspect in the bifurcation diagram due to the non-ideal supposition. (c) 2004 Published by Elsevier B.V.
Resumo:
Using a canonical formulation, the stability of the rotational motion of artificial satellites is analyzed considering perturbations due to the gravity gradient torque. Here Andoyer's variables are used to describe the rotational motion. One of the approaches that allow the analysis of the stability of Hamiltonian systems needs the reduction of the Hamiltonian to a normal form. Firstly equilibrium points are found. Using generalized coordinates, the Hamiltonian is expanded in the neighborhood of the linearly stable equilibrium points. In a next step a canonical linear transformation is used to diagonalize the matrix associated to the linear part of the system. The quadratic part of the Hamiltonian is normalized. Based in a Lie-Hori algorithm a semi-analytic process for normalization is applied and the Hamiltonian is normalized up to the fourth order. Once the Hamiltonian is normalized up to order four, the analysis of stability of the equilibrium point is performed using the theorem of Kovalev and Savichenko. This semi-analytical approach was applied considering some data sets of hypothetical satellites. For the considered satellites it was observed few cases of stable motion. This work contributes for space missions where the maintenance of spacecraft attitude stability is required.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The thermal structure, heat content and stability were studied in Lakes Dom Helvécio and Carioca during an annual cycle. It was found that the maximum heat content, stability and work of the wind in Lake Dom Helvécio correspond to two, four and four times, respectively, the values for the Lake Carioca. These difference can be attributed to morphometric differences in the lakes. A long-term record of heat content and stability for lake Carioca is also presented. Diel variations were studied in summer and winter. The tropicality of the lakes is discussed and compared with other lacustrine systems. © 1989 Kluwer Academic Publishers.