77 resultados para Woody vegetation
Resumo:
Extrafloral nectaries are nectar-secreting structures that are especially common among the woody flora of the Brazilian cerrado, a savanna-like vegetation. In this study, we provide morphological and anatomical descriptions of extrafloral nectaries (EFNs) occurring on vegetative and reproductive organs of several plant species from the cerrado, and discuss their function and ecological relevance. We describe the morphology and anatomy of EFNs of 40 species belonging to 15 woody families using scanning electron microscopy and light microscopy. We categorise EFNs following a structural-topographical classification, and characterise the vascularised and complex nectaries, amorphous nectaries and secretory trichomes. Fabaceae, Bignoniaceae, Malpighiaceae and Vochysiaceae were the plant families with the majority of species having EFNs. Ten species possess more than one morphotype of gland structure. Observations and experimental field studies in the cerrado support the anti-herbivore role of EFN-gathering ants in this habitat. Additional morphological studies of EFNs-bearing plants, including other growth forms (e.g. herbs and lianas), are being undertaken and will hopefully cast further light on the ecological relevance of these glands in the cerrado, especially with respect to their attractiveness to multiple visitors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Savannas are characterized by sparsely distributed woody species within a continuous herbaceous cover, composed mainly by grasses and small eudicot herbs. This vegetation structure is variable across the landscape, with shifts from open grassland to savanna woodland determined by factors that control tree density. These shifts often appear coupled with environmental variations, such as topographic gradients. Here we investigated whether herbaceous and woody savanna species differ in their use of soil water along a topographic gradient of about 110 m, spanning several vegetation physiognomies generally associated with Neotropical savannas. We measured the delta H-2 and delta O-18 signatures of plants, soils, groundwater and rainfall, determining the depth of plant water uptake and examining variations in water uptake patterns along the gradient. We found that woody species use water from deeper soil layers compared to herbaceous species, regardless of their position in the topographic gradient. However, the presence of a shallow water table restricted plant water uptake to the superficial soil layers at lower portions of the gradient. We confirmed that woody and herbaceous species are plastic with respect to their water use strategy, which determines niche partitioning across topographic gradients. Abiotic factors such as groundwater level, affect water uptake patterns independently of plant growth form, reinforcing vegetation gradients by exerting divergent selective pressures across topographic gradients. (C) 2013 SAAB. Published by Elsevier B.V. All rights reserved.
Resumo:
Savanna woody plant communities are widespread in Brazil, where this vegetation type can be divided into core-central and marginal areas within its range of distribution. The study of diversity patterns of plant communities can provide insights into the distribution, biogeography, and diversity of plant species in widespread biomes. The objectives of this study were to measure standard and phylogenetic indices of diversity in woody plant communities of the savanna vegetation of Brazil (Cerrado) throughout its extensive range. Based on a metaanalysis, the diversity indexes were compared using traditional statistical methods, a phylogenetic approach, and by mapping. Similar patterns were found for phylogenetic and traditional indexes of diversity in core and marginal areas, suggesting that both lower and higher diversity sites can occur within the Cerrado geographical area. The only difference was found in low diversity, disjunct savanna sites within the Amazon basin, which are isolated by the Amazon River from the more continuous central-southern Cerrado area.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study analyzed the composition of the aquatic fauna associated to the mangrove forest in a southeastern Brazilian river. The composition of the macrofauna in the roots of the marginal vegetation located at three different salinity stretches was analyzed by sampling pieces of the submerged branches of the vegetation (natural substrate) and pieces of sisal rope (artificial substrate), installed close to the natural vegetation and sampled after a period of 14 colonization days. In both types of substrate, twelve taxonomic groups were sampled, representing three phyla (Cnidaria, Annelida and Arthropoda). The crustaceans, corresponding to the most diversified group, were represented by Copepoda, Tanaidacea, Isopoda, Amphipoda and Decapoda. The highest salinity stretch showed the highest abundance, with a progressive decrease from high to low salinity for both substrates. Copepoda and Tanaidacea predominated on both substrates, although the artificial substrate exhibited the highest total abundance and species richness. Considering the relative abundance of the taxonomic groups on both substrates, the majority of groups predominated in the highest salinity range. Significant differences on the longitudinal distribution of abundance were associated to the variation on salinity and with the complexity of the substrate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of a population of the understorey woody bamboo Merostachys riedeliana and different flooding regimes on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil was examined. A forest section with an area of 1.6 ha composed of 71 adjacent plots was located on a slope ending at the river margin. The section was divided into five topographical sectors according to the mean duration of river floods. In 1991 and 1998 all trees with a diameter at the base of the trunk greater than or equal to 5 cm were measured, identified and tagged, and all live bamboo culms were counted. Annualised estimates of the rates of tree mortality and recruitment, gain and loss of tree basal area, and change in bamboo density were calculated for each of the 71 plots and five topographical sectors as well as for diameter classes and tree species. To segregate patterns arising from spatially autocorrelated events, geostatistical analyses were used prior to statistical comparisons and correlations. In general, mortality rates were not compensated by recruitment rates but there was a net increase in basal area in all sectors, suggesting that the tree community as a whole was in a building phase. Tree community dynamics of the point bar forest (Depression and Levee sectors) differed from that of the upland forest (Ridgetop, Middle Slope and Lower Slope sectors) in the extremely high rates of gain in basal area. The predominant and specialised species, Inga vera and Salix humboldtiana, are probably favoured by relaxed competition in an environment stressed by long-lasting floods. In the upland forest, mortality rates were highest at the Middle Slope, particularly for smaller trees, while recruitment rates were lowest. As bamboo clumps were concentrated in this sector, the locally higher instability in the tree community probably resulted from the direct interference of bamboos. The density of bamboo culms in the upland forest was negatively correlated with the rates of tree recruitment and gain in basal area, and positively correlated with tree mortality rates. Bamboos therefore seemed to restrict the recruitment, growth and survival of trees.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The diversity of tropical forest plant phenology has called the attention of researchers for a long time. We continue investigating the factors that drive phenological diversity on a wide scale, but we are unaware of the variation of plant reproductive phenology at a fine spatial scale despite the high spatial variation in species composition and abundance in tropical rainforests. We addressed fine scale variability by investigating the reproductive phenology of three contiguous vegetations across the Atlantic rainforest coastal plain in Southeastern Brazil. We asked whether the vegetations differed in composition and abundance of species, the microenvironmental conditions and the reproductive phenology, and how their phenology is related to regional and local microenvironmental factors. The study was conducted from September 2007 to August 2009 at three contiguous sites: (1) seashore dominated by scrub vegetation, (2) intermediary covered by restinga forest and (3) foothills covered by restinga pre-montane transitional forest. We conducted the microenvironmental, plant and phenological survey within 30 transects of 25 mx4 m (10 per site). We detected significant differences in floristic, microenvironment and reproductive phenology among the three vegetations. The microenvironment determines the spatial diversity observed in the structure and composition of the flora, which in turn determines the distinctive flowering and fruiting peaks of each vegetation (phenological diversity). There was an exchange of species providing flowers and fruits across the vegetation complex. We conclude that plant reproductive patterns as described in most phenological studies (without concern about the microenvironmental variation) may conceal the fine scale temporal phenological diversity of highly diverse tropical vegetation. This phenological diversity should be taken into account when generating sensor-derived phenologies and when trying to understand tropical vegetation responses to environmental changes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)