56 resultados para Welded joints


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental investigations were carried out using a Nd:YAG laser operating in pulsed mode for welding a lap joint between thin foil and thick sheet. The pulse energy was varied from 1.5 to 3.0 J at increments of 0.25 J with a 4 ms pulse duration. The base material used for this study was AISI 316L foils with 100 mu m thickness and sheet with 3.0 mm thickness. The welds were analysed by optical and electronic microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to join thin foil and thick sheet with good quality. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. The process appeared to be very sensitive to the gap between couples. Large voids delimited by the molten zone boundary were observed in joints welded with high pulse energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to value the possibility to join, for pulsed Nd:YAG laser welding, thin foils lap joints for sealing components in corrosive environment. Experimental investigations were carried out using a pulsed neodymium: yttrium aluminum garnet laser weld to examine the influence of the pulse energy in the characteristics of the weld fillet. The pulse energy was varied from 1.0 to 2.5 J at increments of 0.25 J with a 4 ms pulse duration. The base materials used for this study were AISI 316L stainless steel and Ni-based alloys foils with 100 mu m thickness. The welds were analyzed by electronic and optical microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to thin foil weld quality because it can generate good mechanical properties and reduce discontinuities in weld joints. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. In all the specimens, fracture occurred in the top foil heat-affected zone next to the fusion line. The microhardness was almost uniform across the parent metal, HAZ and weld metal. A slight increase in the fusion zone and heat-affected zone compared to those measured in the base metal was observed. This is related to the microstructural refinement in the fusion zone, induced by rapid cooling of the laser welding. The process appeared to be very sensitive to the gap between couples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When a bolted joint is loaded in tension with dynamically, part of this load is absorbed by the bolt and rest is absorbed by the joint material. What determines the portion that is to absorbed by the bolt is the joint stiffness factor. This factor influences the tension which corresponds to pre-load and the safety factor for fatigue failure, thus being an important factor in the design of bolted joints. In this work, three methods of calculating the stiffness factor are compared through a spreadsheet in Excel software. The ratio of initial pre-load and the safety factor for fatigue failure depending on the stiffness factor graph is generated. The calculations for each method show results with a small difference. It is therefore recommended that each project case is analyzed, and depending on its conditions and the range of stiffness values, the more or less rigid method about the safety factor for fatigue failure is chosen. In general, the approximation method provides consistent results and can be easily calculated

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because of the great metallurgical advances, the welded tubes by HF / ERW (High Frequency / Electrical Resistance Welding) have played a more active role in the oil and gas, gradually replacing tubes produced by other processes (UOE, SAW, and others) to deep water applications, in high and extremely low temperatures, highpressure conditions and in highly corrosive environments. However, studies have revealed that defects in the welded joints are in one of main causes of failures in pipelines. Associated with damage external and the stringent requirements of this sector, the welded joints become particularly critical for his toughness and the determination of this particular property is fundamental. This study aims to evaluate the toughness of the HF / ERW pipes in HSLA steel API X70 class, used in pipelines transport systems of gas and oil from data obtained with CTOD tests (Crack Tip Opening Displacement). The main objectives of this project are: mechanical and microstructural characterization of steels API X70 manufactured in Brazil; and evaluation of the toughness of weld process by HF / ERW steel API X70 national. After having the tests done, mechanical, chemical and metallurgical, we have the conclusion that those pipe are in agreement to API 5L 42ª edition for X70MO and the toughness behaves like the expected

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies about structural integrity are very important when it desires to prevent disasters associated with flaws inherent in materials used in structural components. The welded joints in steel pipes used to conduction and distribution of oil and gas correspond to the regions most susceptible to flaw. Aiming to contribute to this research line, the present study was designed to assess experimentally the structural integrity of welded joints in steel pipes API 5L X70 used in pipeline systems. This assessment is given from tests of CTOD, whose aim is simulate in laboratory the real behaviour of crack from of his propagation on the welded joint obtained by high frequency electric resistance welding. In this case, the analyses are performed from specimens SE(B) obtained directly of steel pipe API 5L X70. The proposed methodology involves tests of CTOD at lower temperature, in order to assess the toughness of material in critical operation conditions. From performance of CTOD tests, was possible assess the toughness of welded joints in terms of quantity through CTOD parameter and in terms of quality from behaviour of curve load versus CMOD. In this study, also, sought to compare CTOD’s results obtained through rules ASTM E1820 (2008) and BS 7448 (1991). Although the two standards cited previously have adopted different parameters to calculated the value of CTOD, concluded that the values of CTOD tend to converge for a common value

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT P110, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of nonmetallic inclusions in the welded joint

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The technological advancement in order to improve the methods of obtaining energy sources such as oil and natural gas is mainly motivated by the recent discovery of oil reserves. So, increasingly , there is a need for a thorough knowledge of the materials used in the manufacture of pipelines for transportation and exploration of oil and natural gas. The steels which follow the API standard (American Petroleum Institute), also known as high strenght low alloy (hsla), are used in the manufacture of these pipes, as they have, with their welded joints, mechanical properties to withstand the working conditions to which these ducts will be submitted . The objective of this study is to evaluate the fatigue behavior in microalloyed steel grade API 5L X80 welded by process HF / ERW . For this, axial fatigue tests to obtain S-N curve (stress vs. number of cycles ) were conducted. To complement the study, it was performed metallographic , fractographic , Vickers hardness tests and tensile tests to characterize the mechanical properties of the steel and check whether the values satisfy the specifications of the API 5L standard . From the fatigue tests , it was concluded that the surface finish influences directly on the fatigue life of the material

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT N80, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of non-metallic inclusions in the welded joint

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In contemporary industrial, welding processes are widely used, this is the most important process of joining metals used industrially. The welding can be used to build simple structures, like doors and gates for instance, in the same way can be used in situations of high responsibility, such as the nuclear industry and oil industry. Dissimilar welding is a case of welded joints, is characterized by the junction between different materials, for this case, stainless steel and carbon steel that are widely used in steam lines, power plants, nuclear reactors, petrochemical plants. Because their different mechanical and corrosive properties, the join, stainless steel with carbon steel, not only meets environmental requirements and also reduces cost. By using penetrating liquid tests, macrograph, hardness and tensile test was compared the possibility of replacing the current use of 309 rods as filler metal in dissimilar welding between carbon steel and stainless steel by add-on material carbon steel essentially, in this case E7018 coated electrode was used, but without the coating. After analysis of the results and for comparison, was proposed with some certainty that it is possible to replace the addition of materials, thus leading economy in this process widely used in the modern industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work focuses on a study on the fatigue behavior of a microalloyed steel API 5L X70, used in pipes lines to transport oil and gas. These types of steels have excellent mechanical resistance values and ductility and therefore increased their study driven by increased demand for oil and especially natural gas, which consequently raises the need to build new pipelines to transport these products. The oil extraction units, composed of the risers (pipelines connecting the oil well to the ship), are dimensioned to remain installed for periods of 20 to 30 years in the marine environment, a hostile environment for high pressure, corrosion, low temperatures and the stresses caused by the movement of water and tides. For analysis, the S-N (stress versus number of cycles) curves were obtained from data collected from bodies-of-proof cylindrical longitudinal, transverse and that one removed from the weld area of the pipe, tested in accordance with ASTM E466. Tensile tests were performed for characterizing the mechanical properties of the samples and welded joints, concluded that the values meet the specifications of the standard API 5L. To characterize microstructural material, also metallographic analysis was made of regions of the base metal and the HAZ. The results of fatigue tests demonstrated a higher life for the specimens removed from the longitudinal direction the pipe, followed by those in the transverse direction and, finally, the welded joint. The origins of the fatigue cracks were determined by scanning electron microscopy (SEM)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG