19 resultados para Weibull distribution
Resumo:
O regime eólico de uma região pode ser descrito por distribuição de frequências que fornecem informações e características extremamente necessárias para uma possível implantação de sistemas eólicos de captação de energia na região e consequentes aplicações no meio rural em regiões afastadas. Estas características, tais como a velocidade média anual, a variância das velocidades registradas e a densidade da potência eólica média horária, podem ser obtidas pela frequência de ocorrências de determinada velocidade, que por sua vez deve ser estudada através de expressões analíticas. A função analítica mais adequada para distribuições eólicas é a função de densidade de Weibull, que pode ser determinada por métodos numéricos e regressões lineares. O objetivo deste trabalho é caracterizar analítica e geometricamente todos os procedimentos metodológicos necessários para a realização de uma caracterização completa do regime eólico de uma região e suas aplicações na região de Botucatu - SP, visando a determinar o potencial energético para implementação de turbinas eólicas. Assim, foi possível estabelecer teoremas relacionados com a forma de caracterização do regime eólico, estabelecendo a metodologia concisa analiticamente para a definição dos parâmetros eólicos de qualquer região a ser estudada. Para o desenvolvimento desta pesquisa, utilizou-se um anemômetro da CAMPBELL.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The generalized exponential distribution, proposed by Gupta and Kundu (1999), is a good alternative to standard lifetime distributions as exponential, Weibull or gamma. Several authors have considered the problem of Bayesian estimation of the parameters of generalized exponential distribution, assuming independent gamma priors and other informative priors. In this paper, we consider a Bayesian analysis of the generalized exponential distribution by assuming the conventional non-informative prior distributions, as Jeffreys and reference prior, to estimate the parameters. These priors are compared with independent gamma priors for both parameters. The comparison is carried out by examining the frequentist coverage probabilities of Bayesian credible intervals. We shown that maximal data information prior implies in an improper posterior distribution for the parameters of a generalized exponential distribution. It is also shown that the choice of a parameter of interest is very important for the reference prior. The different choices lead to different reference priors in this case. Numerical inference is illustrated for the parameters by considering data set of different sizes and using MCMC (Markov Chain Monte Carlo) methods.
Resumo:
Purpose - The purpose of this paper is to present designs for an accelerated life test (ALT). Design/methodology/approach - Bayesian methods and simulation Monte Carlo Markov Chain (MCMC) methods were used. Findings - In the paper a Bayesian method based on MCMC for ALT under EW distribution (for life time) and Arrhenius models (relating the stress variable and parameters) was proposed. The paper can conclude that it is a reasonable alternative to the classical statistical methods since the implementation of the proposed method is simple, not requiring advanced computational understanding and inferences on the parameters can be made easily. By the predictive density of a future observation, a procedure was developed to plan ALT and also to verify if the conformance fraction of the manufactured process reaches some desired level of quality. This procedure is useful for statistical process control in many industrial applications. Research limitations/implications - The results may be applied in a semiconductor manufacturer. Originality/value - The Exponentiated-Weibull-Arrhenius model has never before been used to plan an ALT. © Emerald Group Publishing Limited.