36 resultados para Vortex Dislocation
Resumo:
We analyze the dynamics of a driven vortex lattice moving in a thin Superconducting stripe. The two dimensional stripe is assumed to be finite in the longitudinal direction, where we take into account the Surface effects, and infinite in the transversal direction. The numerical simulations are performed using the Langevin dynamics, including the vortex-vortex interaction, interaction of vortices with the surface current, vortex images, transport current and randomly distributed pinning centers. We show results for the differential resistivity and the vortex trajectories as a function of the external force. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work we investigate the dynamics of vortices in a square mesoscopic superconductor. As time evolves we show how the vortices are nucleated into the sample to form a multivortex, single vortex, and giant vortex states. We illustrate how the vortices move around at the transition fields before they accommodate into an equilibrium configuration. We also calculate the magnetization and the free energy as functions of the applied magnetic field for several values of temperature. In addition, we evaluate the upper critical field.
Resumo:
We considered a system of two vortex lines running in different directions with their average vortex direction making an arbitrary angle theta with respect to the crystal c axis. The free energy of this system is calculated as a function of the relative angle 2 alpha between the two inclined vortex lines with respect to each other. For sufficiently high anisotropy, it is shown that, as the induction is tilted away from the crystal c axis (theta not equal 0), the inclined vortex lines (alpha not equal 0) suddenly becomes more stable than that with parallel vortex lines (alpha = 0). While theta is increased, the system continuously changes towards the parallel configuration before the angle theta approaches 90 degrees.
Resumo:
In the present work we study an anisotropic layered superconducting film of finite thickness. The film surfaces are considered parallel to the be face of the crystal. The vortex lines are oriented perpendicular to the film surfaces and parallel to the superconducting planes. We calculate the local field and the London free energy for this geometry. Our calculation is a generalization of previous works where the sample is taken as a semi-infinite superconductor. As an application of this theory we investigate the flux spreading at the super conducting surface.
Resumo:
Measurements of magnetization in YBa2Cu3O7-δ single crystals were performed for applied fields H parallel and perpendicular to the ab planes. The data show a temperature T = T* at which the magnetization M(T*) is independent of the applied field. This result is interpreted as due to vortex fluctuations of an anisotropic 3-D superconductor.
Resumo:
Two distinct expressions of the interaction potential between arbitrarily oriented curved vortex lines with respect to the crystal c axis are derived within the London approximation. One of these expressions is used to compute the eigenvalues of the elasticity matrix. We examine the elastic properties of the vortex chain lattice, recently proposed, concerning shearing deformation.
Resumo:
We investigate the flux penetration patterns and matching fields of a long cylindrical wire of circular cross section in the presence of an external magnetic field. For this study we write the London theory for a long cylinder both for the mixed and Meissner states, with boundary conditions appropriate for this geometry. Using the Monte Carlo simulated annealing method, the free energy of the mixed state is minimized with respect to the vortex position and we obtain the ground state of the vortex lattice for N=3 up to 18 vortices. The free energy of the Meissner and mixed states provides expressions for the matching fields. We find that, as in the case of samples of different geometry, the finite-size effect provokes a delay on the vortex penetration and a vortex accumulation in the center of the sample. The vortex patterns obtained are in good agreement with experimental results.
Resumo:
A numerical study of the time-dependent Gross-Pitaevskii equation for an axially symmetric trap to obtain insight into the free expansion of vortex states of BEC is presented. As such, the ratio of vortex-core radius to radia rms radius xc/xrms(<1) is found to play an interesting role in the free expansion of condensed vortex states. the larger this ratio, the more prominent is the vortex core and the easier is the possibility of experimental detection of vortex states.
Resumo:
The dynamics of small repulsive Bose-Einstein condensed vortex states of 85Rb atoms in a cylindrical traps with low angular momentum was studied. The time-dependent mean-field Gross-Pitaevskii equation was used for the study. The condensates collapsed and atoms ejected via explosion and a remnant condensate with a smaller number of atoms emerges that survived for a long time.
Resumo:
Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation we study the dynamics of interaction among vortex solitons in a rotating matter-wave bright soliton train in a radially trapped and axially free Bose-Einstein condensate to understand certain features of the experiment by Strecker et al (2002 Nature 417 150). In a soliton train, solitons of opposite phase (phase δ = π) repel and stay apart without changing shape; solitons with δ = 0 attract, interact and coalesce, but eventually come out; solitons with a general δ usually repel but interact inelastically by exchanging matter. We study this and suggest future experiments with vortex solitons.
Resumo:
We suggest the possibility of observing and studying bright vortex solitons in attractive Bose-Einstein condensates in three dimensions with a radial trap. Such systems lie on the verge of critical stability and we discuss the conditions of their stability. We study the interaction between two such solitons. Unlike the text-book solitons in one dimension, the interaction between two radially trapped and axially free three-dimensional solitons is inelastic in nature and involves exchange of particles and deformation in shape. The interaction remains repulsive for all phase δ between them except for δ ≈ 0.
Resumo:
Studies of the third harmonic of the AC-susceptibility were conducted to detect the boundaries of the linear regime of the magnetic response of granular Nb samples. These studies reveal the extent of the region, on the phase diagram, where the magnetic response is linear, which corresponds to the disordered phase of Vortex Matter. The present work addresses the correlation between a linear response and experimental parameters such as the frequency and the amplitude of the excitation field. The order-disorder border has been extracted from the onset temperature of the third harmonic measured at low-frequencies and low-excitation fields in the presence of dc magnetic fields. © 2008 IOP Publishing Ltd.
Resumo:
There are situations which the tomographic exam is done on the affected hip or situations where the contralateral hip presents abnormalities that make it impossible to compare. In this study we aimed to evaluate a tomographic index that does not require comparison between the both hips. Twenty two patients with unilateral acetabular fracture dislocation with fracture of posterior wall were studied. We established the relationship between the remaining posterior wall and the femoral head diameter (head/wall index-H/W index). We evaluated 45 two-dimensional computed tomography scan in normal hips and established the H/W index. In 45 normal hips we simulated a posterior wall fracture with involvement of 25% and 30% of the posterior wall and calculated the H/W index. We divided into five groups with five different H/W index (fractured group with non surgical treatment; fractured group; normal group; normal group with simulated fracture of 25% and; 30% of the posterior wall). 2.4 was the lowest limit of confidence interval of the group with 25% of the posterior wall fracture. When we analyzed the confidence interval of the 30% fracture group the upper limit of the confidence interval was 2.7, close to the lower limit of the surgical group that was 2.9. Thus, we suggest the 2.4 the H/W index limit as an auxiliary criteria to indicate whether or not to operate. H/W index is helpful to decide whether or not surgery indication in the fracture dislocation of the posterior wall of the acetabulum. © 2012 Fujiki et al.; licensee BioMed Central Ltd.
Resumo:
The influence of superficial defects on the vortex configurations of a thin superconducting disk is investigated within the time dependent Ginzburg-Landau formalism. The free energy, magnetization, vorticity, and the Cooper pair density are calculated for both metastable and stable vortex configurations and different number of defects on its surface in the presence of an external magnetic field applied perpendicular to the disk area. We show that the competition between the confinement geometry and the geometric position of the defects leads to non-conventional vortex configurations which are not compatible with the symmetry of the sample geometry.
Resumo:
The critical current and melting temperature of a vortex system are analyzed. Calculations are made for a two-dimensional film at finite temperature with two kinds of periodic pinning: hexagonal and Kagomé. A transport current parallel and perpendicular to the main axis of the pinning arrays is applied and molecular dynamics simulations are used to calculate the vortex velocities to obtain the critical currents. The structure factor and displacements of vortices at zero transport current are used to obtain the melting temperature for both pinning arrays. The critical currents are higher for the hexagonal pinning lattice and anisotropic for both pinning arrays. This anisotropy is stronger with temperature for the hexagonal array. For the Kagomé pinning lattice, our analysis shows a multi stage phase melting; that is, as we increase the temperature, each different dynamic phase melts before reaching the melting temperature. Both the melting temperature and critical currents are larger for the hexagonal lattice, indicating the role for the interstitial vortices in decreasing the pinning strength. © 2012 Springer Science+Business Media New York.