112 resultados para Vinyl polysiloxane
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Silica wet gels were prepared from acid sonohydrolysis of tetraethoxysilane (TEOS) and additions of poly(vinyl alcohol) (PVA)-water solution. Aerogels were obtained from supercritical CO(2) extraction. The samples were studied by thermal gravimetric (TG) analysis, small-angle X-ray scattering (SAXS), and nitrogen adsorption. The structure of wet gels can be described as a mass fractal with dimension D equal to 2.0 on the whole length scale experimentally probed by SAXS, from similar to 0.3 to similar to 15 nm. Pure and low-PVA-addition wet gels exhibit an upper cutoff accounting for a finite characteristic length xi of the mass fractal structure. Additions , of PVA increase without modifying D, which was attributed to a steric effect of the polymer in the structure. The pore volume fraction of the aerogels diminishes typically about 11% with respect to that of the wet gels, although nitrogen adsorption could be underestimating some porosity. The pore size distribution of the aerogels is shifted toward the mesopore region with the additions of PVA, in a straight relationship with the increase of xi in the wet gels. The thermal stability of the pore size distribution of the aerogels was studied up to 1000 degrees C.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes an XPS investigation of plasma-deposited polysiloxane films irradiated with 170 keV He+ ions at fluences, Phi, ranging from 1 x 10(14) to 1 x 10(16) cm(-2). Modifications in the atomic concentrations of the surface atoms with (D were revealed by changes in the [O]/[Si], [O]/[C] and [C]/[Si] atomic ratios. Surface chemical structure modifications were evidenced by the increasing C1s peak width and asymmetry as Phi was increased, due to the formation of ether and carboxyl functionalities. Moreover, structural transformations were indicated by the positive binding energy shift of the Si2p peaks, due to the increasing Si oxidation. Correlations of the XPS data with other results from previous work on polysiloxanes illustrate the role of ion beam-induced bond breaking on the structural modifications.
Resumo:
A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (24, 48, and 96 h) and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (H-1 NMR) spectroscopy, and scanning electron microscopy (SEM). PVA films show a loss of thermal stability due to irradiation. PVA/KLD reveals greater thermal stability than PVA and an increase in thermal stability after irradiation. These results suggest that the incorporation of KLD into PVA provides a gain in thermal and photochemical stability. FTIR, H-1 NMR, DSC, and TG results obtained for the blends suggest that intermolecular interactions between PVA and KLD chains are present. SEM micrographs revealed blend miscibility for a KLD blend content of up to 15 wt%, as observed at magnification of 1000 times. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Polysiloxane hybrid films were deposited on stainless steel by dip-coating using a sol prepared by hydrolytic co-polycondensation of tetraethoxysilane (TEOS) and 3-methacryloxy propyltrimethoxysilane (MPTS), followed by radical polymerization of methacrylic moieties. The TEOS/MPTS ratio was chosen equal to 2 and the Ce/Si ratio varied between 0.01 and 0.1. The effects of cerium concentration and valence (Ce(III) and Ce (IV)) on the structural features of polysiloxane films were studied by X-ray photoelectron spectroscopy (XPS) and (29)Si nuclear magnetic resonance (NMR). The corrosion protection of stainless steel by the hybrid coatings was investigated by XPS, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves, after immersion in saline and acid solutions. The NMR results have shown for Ce(IV) doped films a high degree of polycondensation of up to 89%. Electrochemical analysis has evidenced that hybrid films with the lowest Ce concentration act as an efficient diffusion barrier by increasing the corrosion resistance and reducing the current densities up to 3 orders of magnitude compared to bare stainless steel. The analysis of structural effects induced by Ce(III) and Ce(IV) species, performed by XPS, indicates that the improved corrosion protection of Ce(IV) doped films might be mainly related to the enhanced polymerization of siloxane groups. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work, siloxane-poly(propylene oxide) discs (PPO disc) prepared using the sol-gel process were used as solid phase in enzyme-linked immunosorbent assays (ELISA) for the detection of anti-hepatitis C virus (HCV) antibodies. The HCV RNA from serum (genotype 1b) was submitted to the RT-PCR technique and subsequent amplification of the HCV core 408 pb. This fragment was cloned into expression vector pET42a and expressed in Escherichia coli as recombinant protein with glutathione S-transferase (GST). Cell cultures were grown and induced having a final concentration of 0.4 x 10(-3) mol L-1 of IPTG. After induction, the cells were harvested and the soluble fraction was analyzed using polyacrilamide gel 15% showing a band with an approximate molecular weight of 44 kDa, the expected size for this GST-fused recombinant protein. The recombinant protein was purified and continued by immunological detection using HCV-positive serum and showed no cross-reactivity with positive samples for other infectious diseases. An ELISA was established using 1.25 ng of recombinant protein per PPO disc, a dilution of 1: 10,000 and 1:40 for a peroxidase conjugate and serum, respectively, and solutions of hydrogen peroxide and 3,3',5,5'-tetra-methylbenzidine in a ratio of 1: 1. The proposed methodology was compared with the ELISA conventional polystyrene-plate procedure and the performance of the PPO discs as a matrix for immunodetection gave an easy synthesis, good performance and reproducibility for commercial application. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The influence of benzoyl peroxide (BPO) on the synthesis of polysiloxane thin films doped with Ce(III) deposited onto Sn coated steel as well as their anticorrosion properties are reported. The addition of BPO, whose role is polymerize the film, showed an increase in |Z| values due to the fact that augments the crossed link bonds and therefore improves the protective feature of the film. Ce(III) does not act in the polymerization process and thus is essential the addition of BPO to obtain more resistant polysiloxane films. ©The Electrochemical Society.
Resumo:
This paper presents the results of thermogravimetric analysis (TGA) tests in PVC (1.0; 2.0 mm) and HDPE (0.8; 2.5 mm) geomembranes exposed to weathering and leachate after 30 months. The aim of this paper is the comparison of fresh and exposed samples to assess the degradation process concerning the total loss of mass of geomembranes. The exposure was conducted in accordance with the recommendations of ASTM standards. The TGA tests were carried out according to ASTM D6370 and E2105. Results show, for instance, that for PVC geomembrane the largest reductions of plasticizers occurred for samples exposed to weathering. The loss of plasticizers after the exposure contributed to the decrease of deformation and consequent increase in stiffness. TGA tests shows to be a valuable tool to control the quality of the materials. © 2012 ejge.
Resumo:
In the present paper we investigated the effect of adsorbed PVA on Pt electrodes on classic electrochemical processes such as hydrogen UPD, oxygen reduction and CO electro-oxidation. Upon adsorption PVA blocks roughly 50% of the hydrogen sites and can not be removed from the Pt surface through cycling in the potential range of 0.05-1.0 V vs. RHE. Potentiodynamic experiments under controlled hydrodynamic conditions provided by rotating disk electrode experiments showed a negative impact of the adsorbed PVA on the oxygen reduction reaction (ORR). Cyclic-voltammetry results revealed that not even CO was able to remove PVA from the Pt surface. Regarding the oxidation of CO, the adsorbed polymer positively shifted the CO oxidation peak potential, therefore higher potentials are required to free the Pt surface from CO poisoning. In situ Fourier transform infrared spectroscopy evidenced that the presence of PVA shifted the linearly bound CO frequency toward higher wavenumbers, a process found to be independent of the Pt surface orientation. In situ electrochemical X-ray absorption spectroscopy results showed that PVA also impacted the electronic properties of platinum by decreasing the occupancy of the Pt conducting 5d band. Our findings clearly support the efforts toward understanding the nature of the interaction between polymers and metallic surfaces as well as the impact on technological applications (e.g. in PEMFCs). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents results describing the physical, mechanical, and thermal properties (melt flow index - MFI and oxidative induction time - OIT) of high density polyethylene and poly (vinyl chloride) after weathering exposure (6, 12, 18, and 30 months). The materials exposed were geomembranes of two thicknesses: 1.0 and 2.0 mm (PVC) and 0.8 and 2.5 mm (HDPE). The climate parameters (average) obtained were 25 degrees C (temperature), 93 mm (precipitation), 66% (relative humidity), and 19 MJ/m(2). day (intensity of global radiation). Some results showed, for instance, that the behavior of the geomembranes changed after the exposures. A few minor variations in physical properties occurred. The density and thickness, for instance, varied 0.5-1.0% (average) for both the PVC and HDPE geomembranes. The mechanical properties changed as a function of the period of exposure. In general, some decreases were verified by the deformation of PVC. The samples became more rigid. In contrast, HDPE geomembranes became more ductile. Despite the variations in elasticity, some increases in deformability were verified. An MFI test showed some degradation in HDPE geomembranes. OIT tests revealed small values for both intact and exposed samples.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)