87 resultados para Variational approximation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neural networks and wavelet transform have been recently seen as attractive tools for developing eficient solutions for many real world problems in function approximation. Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. So, mathematical model is a very important tool to guarantee the development of the neural network area. In this article we will introduce one series of mathematical demonstrations that guarantee the wavelets properties for the PPS functions. As application, we will show the use of PPS-wavelets in pattern recognition problems of handwritten digit through function approximation techniques.
Resumo:
This work presents an application for the plate analysis formulation by BEM where 3 boundary equations are used, written for the transverse displacement w and the normal and tangential derivatives partial derivativew/partial derivativen and partial derivativew/partial derivatives. In this extension, the transverse displacement w is approximated by a cubic polynomial and, as a consequence, partial derivativew/partial derivatives has a quadratic approximation. This alternative BEM formulation improves the analysis of thin plates, when compared to the formulation using the linear approximation for the displacements, mainly in the obtaining of the bending moments at the boundary of the plate. The implementation of this proposal to the computational codes is simple. (C) 2004 Published by Elsevier Ltd.
Resumo:
In this work, the energy eigenvalues for the confined Lennard-Jones potential are calculated through the Variational Method allied to the Super symmetric Quantum Mechanics. Numerical results are obtained for different energy levels, parameters of the potential and values of confinement radius. In the limit, where this radius assumes great values, the results for the non-confined case are recovered..
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We establish the bridge between the commonly used Nabetani-Ogaito-Sato-Kishimoto (NOSK) formula for the asymmetry parameter a(Lambda) in the Lambda p -> np emission of polarized hypernuclei, and the shell-model (SM) formalism for finite hypernuclei. We demonstrate that the s-wave approximation leads to a SM formula for a(Lambda) that is as simple as the NOSK one and that reproduces the exact results for (5)(Lambda)He and (12)(Lambda)C better than initially expected. The simplicity achieved here is indeed remarkable. The new formalism makes the theoretical evaluation of a(Lambda) more transparent and explains clearly why the one-meson exchange model is unable to account for the experimental data of (5)(Lambda)He.
Resumo:
We perform a three-body calculation of direct muon-transfer rates from thermalized muonic hydrogen isotopes to bare nuclei Ne10+, S16+ and Ar18+ employing integro-differential Faddeev-Hahn-type equations in configuration space with a two-state close-coupling approximation scheme. All Coulomb potentials including the strong final-state Coulomb repulsion are treated exactly. A long-range polarization potential is included in the elastic channel to take into account the high polarizability of the muonic hydrogen. The transfer rates so-calculated are in good agreement with recent experiments. We find that the muon is captured predominantly in the n = 6, 9 and 10 states of muonic Ne10+, S16+ and Ar18+, respectively.
Resumo:
We present a convergent variational basis-set calculational scheme for elastic scattering of the positronium atom by the hydrogen atom in S wave. Highly correlated trial functions with appropriate symmetry are needed to achieve convergence. We report convergent results for scattering lengths in atomic units for both singlet (= 3.49 +/-0.20) and triplet (= 2.46 +/-0.10) states.
Resumo:
Positronium (Ps) formation in positron-helium scattering has been investigated in different partial waves at medium energies including the Ore gap region using the close-coupling approximation with realistic wavefunctions for the following states: He(1s1s), He(1s2s), He(1s2p), He(1s3s), He(1s3p), Ps(ls), Ps(2s), Ps(2p). Calculations are reported of rearrangement cross sections to Ps(ls), Ps(2s) and Ps(2p) states for incident positron energies up to 200 eV. The present partial cross sections are in good agreement with experimental results and a variational calculation in the Ore gap region.
Resumo:
We perform variational calculations of heavy-light meson masses using a fitted formula to a lattice two-quark potential. We examine the light quark mass dependence of the meson mass using the Schrodinger equation and the Dirac equation. For the Dirac equation, a saddle-point variational principle is employed, since the Dirac Hamiltonian is not bound from below.
Resumo:
A semi-classical approach is used to obtain Lorentz covariant expressions for the form factors between the kink states of a quantum field theory with degenerate vacua. Implemented on a cylinder geometry it provides an estimate of the spectral representation of correlation functions in a finite volume. Illustrative examples of the applicability of the method are provided by the sine-Gordon and the broken phi(4) theories in 1 + 1 dimensions. (C) 2003 Elsevier B.V. All rights reserved.