43 resultados para VOLUNTARY TASK
Resumo:
By comparing the behavior of three Acromyrmex (Hymenoptera, Formicidae) species during foraging on artificial trails of different lengths, we observed the occurrence of task partitioning and its relation to the food distance from the nest. Task partitioning was verified by leaf cache formation along the trail and leaf direct transferring among workers. There was significant difference between the number of leaf fragments carried directly to the fungus chamber and those transferred direct or indirectly, via cache, depending upon the trail length. Task partitioning could be a strategy used by leaf-cutting ants that allows the workers to use food sources far from their nests.
Resumo:
This paper describes the UNESP robotic team in the medical trash collector task, proposed on the 5 rd IEEE Latin American Robots Competition in the LEGO category. We present our understanding of the task and discuss the proposed solution, focusing on the mechanical and computational issues of the robots. The mechanics is based on rigid body capability of transforming rotational into curvilinear movement. With respect to the computational control, the system is modeled as a reactive system with sequential transition of behaviors. A state-machine is proposed to allow this transition, and the synchronization of robotic states is guaranteed by the communication system. The proposed approach has shown itself capable of dealing with the high difficulty degree of this cooperative task. ©2006 IEEE.
Resumo:
The hypothalamic-pituitary-adrenal (HPA) axis is important in regulating energy metabolism and in mediating responses to stressors, including increasing energy availability during physical exercise. In addition, glucocorticoids act directly on the central nervous system and influence behavior, including locomotor activity. To explore potential changes in the HPA axis as animals evolve higher voluntary activity levels, we characterized plasma corticosterone (CORT) concentrations and adrenal mass in four replicate lines of house mice that had been selectively bred for high voluntary wheel running (HR lines) for 34 generations and in four nonselected control (C) lines. We determined CORT concentrations under baseline conditions and immediately after exposure to a novel stressor (40 min of physical restraint) in mice that were housed without access to wheels. Resting daytime CORT concentrations were approximately twice as high in HR as in C mice for both sexes. Physical restraint increased CORT to similar concentrations in HR and C mice; consequently, the proportional response to restraint was smaller in HR than in C animals. Adrenal mass did not significantly differ between HR and C mice. Females had significantly higher baseline and postrestraint CORT concentrations and significantly larger adrenal glands than males in both HR and C lines. Replicate lines showed significant variation in body mass, length, baseline CORT concentrations, and postrestraint CORT concentrations in one or both sexes. Among lines, both body mass and length were significantly negatively correlated with baseline CORT concentrations, suggesting that CORT suppresses growth. Our results suggest that selection for increased locomotor activity has caused correlated changes in the HPA axis, resulting in higher baseline CORT concentrations and, possibly, reduced stress responsiveness and a lower growth rate. © 2007 by The University of Chicago. All rights reserved.
Resumo:
The purpose of this randomized study was to evaluate EMG spectral, subjective and cardiovascular recovery parameters after isometric lumbar extension contractions. Ten healthy women performed isometric lumbar extensions until exhaustion with 5%, 10%, 15% and 20% of maximal voluntary isometric contraction on 4 different days (random order). One baseline five second contraction was performed before the fatiguing task which was followed by eight submaximal five second extension contractions (until 20 minutes after the end of the fatiguing task) at the same intensity as the trial to evaluate muscle recovery. EMG (Median Frequency, Peak Power, Peak Power Frequency, Total Power and Zero-crossing Rate) and cardiovascular variables did not demonstrate any statistical difference between the 5-second contractions (p > 0.05) performed before and after the fatiguing task, showing a quick EMG recovery. However, the data analysis showed that the perceived effort variable had not recovered even 10 minutes after the fatigue contraction (p < 0.05). Our results represent a data basis for future comparisons and since subjective felling can affect performance, this study shows the importance of its analysis, since the subjective effort rate was not fully recovered after 10 minutes the end of the exhaustion contraction. © 2008 IOS Press. All rights reserved.
Resumo:
To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running ('high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran ∼2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.
Resumo:
Locomotion is central to behavior and intrinsic to many fitnesscritical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from postural costs (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S males might partly explain the apparent selection limit for wheel running observed for over 15 generations. © 2009 by The University of Chicago. All rights reserved.
Resumo:
This study aimed to determine the influence of flexibility of the chair seat surface on the pressure peak and on the contact area during the execution of a task of handling an object on the seated position by individuals with spastic cerebral palsy. Ten individuals of both genders with diagnosis of spastic cerebral palsy, who had some control to voluntarily move the body and the upper limbs, participated in this study. Quantification of data was carried out in two experimental situations: (1) execution of a task of fitting with upper limbs, and with the individual placed on an adapted canvas seat; (2) execution of a task of fitting with the participant positioned on an adapted wooden seat. Data obtained were submitted to a non-parametric and descriptive statistical analysis using the Wilcoxon test. Results indicated that the use of canvas seat increased the contact area and decreased the pressure peak and the medio-lateral displacement of centre pressure on the seated posture. © 2011 Informa UK, Ltd.
Resumo:
Background: The time synchronization is a very important ability for the acquisition and performance of motor skills that generate the need to adapt the actions of body segments to external events of the environment that are changing their position in space. Down Syndrome (DS) individuals may present some deficits to perform tasks with synchronization demand. We aimed to investigate the performance of individuals with DS in a simple Coincident Timing task. Method. 32 individuals were divided into 2 groups: the Down syndrome group (DSG) comprised of 16 individuals with average age of 20 (+/- 5 years old), and a control group (CG) comprised of 16 individuals of the same age. All individuals performed the Simple Timing (ST) task and their performance was measured in milliseconds. The study was conducted in a single phase with the execution of 20 consecutive trials for each participant. Results: There was a significant difference in the intergroup analysis for the accuracy adjustment - Absolute Error (Z = 3.656, p = 0.001); and for the performance consistence - Variable Error (Z = 2.939, p = 0.003). Conclusion: DS individuals have more difficulty in integrating the motor action to an external stimulus and they also present more inconsistence in performance. Both groups presented the same tendency to delay their motor responses. © 2013 Torriani-Pasin et al.; licensee BioMed Central Ltd.
Resumo:
The purpose of the current study was to investigate the role of visual information on gait control in people with Parkinson's disease as they crossed over obstacles. Twelve healthy individuals, and 12 patients with mild to moderate Parkinson's disease, walked at their preferred speeds along a walkway and stepped over obstacles of varying heights (ankle height or half-knee height), under three visual sampling conditions: dynamic (normal lighting), static (static visual samples, similar to stroboscopic lighting), and voluntary visual sampling. Subjects wore liquid crystal glasses for visual manipulation. In the static visual sampling condition only, the patients with Parkinson's disease made contact with the obstacle more often than did the control subjects. In the successful trials, the patients increased their crossing step width in the static visual sampling condition as compared to the dynamic and voluntary visual sampling conditions; the control group maintained the same step width for all visual sampling conditions. The patients showed lower horizontal mean velocity values during obstacle crossing than did the controls. The patients with Parkinson's disease were more dependent on optic flow information for successful task and postural stability than were the control subjects. Bradykinesia influenced obstacle crossing in the patients with Parkinson's disease. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)