36 resultados para VACUUM MISALIGNMENT
Resumo:
We consider quantum electrodynamics in the quenched approximation including a four-fermion interaction with coupling constant g. The effective potential at stationary points is computed as a function of the coupling constants alpha and g and an ultraviolet cutoff LAMBDA, showing a minimum of energy in the (alpha, g) plane for alpha = alpha(c) = pi/3 and g = infinity. When we go to the continuum limit (LAMBDA --> infinity), keeping finite the dynamical mass, the minimum of energy moves to (alpha = 0, g = 1), which correspond to a point where the theory is trivial.
Resumo:
Moisture equilibrium data of pineapple pulp (PP) powders with and without additives - 18% maltodextrin (MD) or 18% gum Arabic (GA) - were determined at 20, 30, 40 and 50 degrees C by using the static gravimetric method in a water activity range of 0.06-0.90. The obtained isotherms were sigmoid, typical type 111, and the Guggenhein-Anderson-de Boer (GAB) model was fitted to the experimental data of equilibrium moisture content versus water activity. Addition of additives was shown to affect the isotherms in such a way that, at the same water activity, samples PP + GA and PP + MD presented lower equilibrium moisture content and were not so affected by varying temperature. The net isosteric heats of sorption of pulp powders with additives were higher (less negative) than those of pineapple pulp powders, suggesting that there are more active polar sites in the product without addition of GA or MD. An empirical exponential relationship could describe the heat of sorption dependence on the material moisture content. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We evaluate the one-loop vacuum polarization tensor for three-dimensional quantum electrodynamics (QED), using an analytic regularization technique, implemented in a gauge-invariant way. We show thus that a gauge boson mass is generated at this level of radiative correction to the photon propagator. We also point out in our conclusions that the generalization for the non Abelian case is straightforward.
Resumo:
Calcium copper titanate (CaCu3Ti4O12) ceramic varistors were prepared by solid-state method. The samples were several times heat treated in vacuum and the evolution of electrical characteristics were monitored by current density versus electric field measurements and impedance spectroscopy. Repeated heat treatments in vacuum (900 degrees C for 1 h, 0.01 Torr) lead to a desorption of oxygen adsorbed at the grain boundaries and consequently to a degradation of the varistor properties. During further successive heat treatments some oxygen from the grain interior moves to the grain boundary thereby partially restoring the varistor properties. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Nonperturbative infrared finite solutions for the gluon polarization tensor have been found, and the possibility that gluons may have a dynamically generated mass is supported by recent Monte Carlo simulation on the lattice. These solutions differ among themselves, due to different approximations performed when solving the Schwinger-Dyson equations for the gluon polarization tensor. Only approximations that minimize energy are meaningful, and, according to this, we compute an effective potential for composite operators as a function of these solutions in order to distinguish which one is selected by the vacuum. © 1997 Elsevier Science B.V.
Resumo:
We show that if a gauge theory with dynamical symmetry breaking has nontrivial fixed points, they will correspond to extrema of the vacuum energy. This relationship provides a different method to determine fixed points.
Resumo:
We reexamine the two-point function approaches used to study vacuum fluctuation in wedge-shaped regions and conical backgrounds. The appearance of divergent integrals is discussed and circumvented. The issue is considered in the context of a massless scalar field in cosmic string spacetime.
Resumo:
We discuss how the vacuum model of Celenza and Shakin with a squeezed gluon condensate can explain the existence of an infrared singular gluon propagator frequently used in calculations within the global color model. In particular, it reproduces a recently proposed QCD-motivated model where low energy chiral parameters were computed as a function of a dynamically generated gluon mass. We show how the strength of the confining interaction of this gluon propagator and the value of the physical gluon condensate may be connected.
Resumo:
We discuss the use of the CP asymmetry parameter (ACP) as a possible observable of CP violation in the leptonic sector. In order to do this, we study for a wide range of values of LIE the behavior of this asymmetry for the corresponding maximal value of the CP violation factor allowed by all the present experimental limits on neutrino oscillations in vacuum and the recent Super-Kamiokande atmospheric neutrino result. We work in the three neutrino flavor framework. ©1999 The American Physical Society.
Resumo:
We use the optimized linear δ expansion and functional methods to study vacuum contributions in nuclear matter up to the lowest non-trivial order which includes exchange terms. We show that well known results (MFT, RHA and HF) can be easily reproduced when appropriate limits are taken. Neglecting vacuum contributions we explicitly show that the δ expansion goes beyond the traditional loop approximation previously used to study two loop vacuum contributions in nuclear matter. We then evaluate and renormalize vacuum exchange contributions showing that they are numerically very large, as predicted by the ordinary loop approximation.
Resumo:
We study the equation of state for neutron matter using the Walecka model including quantum corrections for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to calculate the radius, mass, and other properties of rotating neutron stars.
Resumo:
Using the Cornwall-Jackiw-Tomboulis effective potential for composite operators we compute the QCD vacuum energy as a function of the dynamical quark and gluon propagators, which are related to their respective condensâtes as predicted by the operator product expansion. The identification of this result to the vacuum energy obtained from the trace of the energy-momentum tensor allows us to study the gluon self-energy, verifying that it is fairly represented in the ultraviolet by the asymptotic behavior predicted by the operator product expansion, and in the infrared it is frozen at its asymptotic value at one scale of the order of the dynamical gluon mass. We also discuss the implications of this identity for heavy and light quarks. For heavy quarks we recover, through the vacuum energy calculation, the relation nij{filif)-îi(asl'n)GlivGllv obtained many years ago with QCD sum rules. ©2000 The American Physical Society.
Resumo:
We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.
Resumo:
The possibility to install a getter vacuum pump and its feasible in the anode of a high-power klystron amplifier is investigated in order to decrease of the pressure in the gun and consequently increasing its lifetime. The study is conducted using a 1.3 GHz, 100 A and 240 kV high-power klystron with five reentrant coaxial cavities, assembled in a cylindrical drift tube 1.2 m long. This work takes into account the specific conductance of components of gun and all important gas sources, like the degassing of the drift tube, the cavity walls, the cathode, the anode, and the collector, as well the position and pumping speed of the getter vacuum pump in anode region. © 2006 IEEE.