56 resultados para Ultrasonic propagation
Resumo:
Objective: To compare the efficiency of an Aeroneb Pro vibrating plate and an Atomisor MegaHertz ultrasonic nebulizer for providing ceftazidime distal lung deposition.Design: In vitro experiments. One gram of cetazidime was nebulized in respiratory circuits and mass median aerodynamic diameter of particles generated by ultrasonic and vibrating plate nebulizers was compared using a laser velocimeter. In vivo experiments. Lung tissue concentrations and extrapulmonary depositions were measured in ten anesthetized ventilated piglets with healthy lungs that received 1 g of ceftazidime by nebulization with either an ultrasonic (n = 5), or a vibrating plate (n = 5) nebulizer.Setting: A two-bed Experimental Intensive Care Unit of a University School of Medicine.Intervention: Following sacrifice, 5 subpleural specimens were sampled in dependent and nondependent lung regions for measuring ceftazidime lung tissue concentrations by high-performance liquid chromatography.Measurements and results: Mass median aerodynamic diameters generated by both nebulizers were similar with more than 95% of the particles between 0.5 and 5 mu m. Lung tissue concentrations were 553 +/- 123 [95% confidence interval: 514-638] mu g g(-1) using ultrasonic nebulizer, and 452 +/- 172 [95% confidence interval: 376-528] mu g g(-1) using vibrating plate nebulizers (NS). Extrapulmonary depositions were, respectively, of 38 +/- 5% (ultrasonic) and 34 +/- 4% (vibrating plate) (NS).Conclusions: Vibrating plate nebulizer is comparable to ultrasonic nebulizers for ceftazidime nebulization. It may represent a new attractive technology for inhaled antibiotic therapy.
Resumo:
Background: Ultrasonic excitation (US) was applied to glass ionomer cement (GIC) during early set time to increase the advantageous properties of this material. Purpose: The aim of this in vitro study was to assess the inner porosity of GIC after US. Study design: A total of 16 specimens, for each material, were prepared from high-viscosity GIC Fuji IX GP, Ketac Molar, and Ketac Molar Easymix. Half of these specimens (n = 8) received 30 s of US during the initial cement setting. After completion of the material setting, specimens were fractured and observed by scanning electronic microscopy to quantitatively assay porosity inside the material using Image J software. Results: Statistical data analysis revealed that US reduced the porosity for all tested materials (P <= 0.05). The following reductions (expressed in percentages) were achieved: Fuji IX-from 3.9% to 2.8%; Ketac Molar Easy Mix-from 4.4% to 2.6%, and Ketac Molar-from 2.4% to 1.6%. Conclusion: Under the tested conditions, US was an effective method for porosity reduction inside the material. Microsc. Res. Tech. 74:54-57, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The present study was designed to investigate the effectiveness of different ultrasonic instruments on the root surface. Fourteen patients with 35 single root teeth designated for extraction were recruited to the present study. Teeth were assigned to four experimental groups: group 1, piezoelectric ultrasonic device; group 2, magnetostrictive ultrasonic device; group 3, hand instrumentation; and group 4, untreated teeth (control). After instrumentation, the teeth were extracted and the presence of residual deposits (roughness and root surfaces characteristics) were analyzed. The results showed that residual deposits were similar in all tested groups: piezoelectric, 8.7%; magnetostrictive, 9.7%; hand instrumentation, 11.1% and control, 76.4%. There were statistically significant differences between control and all the experimental groups (p < 0.0001). With respect to roughness parameters evaluation, R(a) and R(z) of the roots treated with the different instruments showed a similar pattern (p > 0.05), but for R(t) and R(y), a significant difference was observed (p < 0.05) among hand instrumentation and ultrasonic devices. SEM analysis revealed a similar root surface pattern for the ultrasonic devices, but curettes showed many instrumental scratches, deep gouges, and a relatively large amount of dentin was removed. Within the limits of the study, although the instruments produced similar results, root surfaces instrumentated with curettes were rougher and had more root surface tissue removed than with the ultrasonic device.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: To evaluate the effect of different cleaning media on the adhesion of resin cement to feldspathic ceramic after etching.Materials and Methods: The cementation surfaces of ceramic blocks (N = 20, n = 5 per group) were etched with 10% hydrofluoric acid (HF) gel for 20 s and rinsed for 60 s. They were then randomly assigned to 4 groups: G1: air-water spray+drying (control); G2: ultrasonic cleaning in distilled water for 4 min+drying; G3: ultrasonic cleaning in 99.5% acetone for 4 min+drying; G4: ultrasonic cleaning in 70% alcohol for 4 min+drying. The ceramic blocks were silanized and cemented (RelyX ARC) to the composite blocks. Subsequently, the microtensile bond strength test (mu TBS) was performed. In addition, EDS analysis was made to assess the elemental composition of the conditioned and cleaned ceramic surfaces.Results: A significantly higher mean mu TBS was obtained when specimens had been ultrasonically cleaned in distilled water (G2: 18.8 +/- 0.4 MPa) (p < 0.05) compared to other groups (G1: 16.6 +/- 0.5; G3: 16.1 +/- 0.9; G4: 15.8 +/- 1.4) (one-way ANOVA). EDS analysis indicated the presence of F- only in G1. Dissolved precipitates after HF etching were removed by ultrasonic cleaning.Conclusion: Cleaning the HF-etched ceramic surface ultrasonically in distilled water is recommended, instead of rinsing it with air-water spray only.
Resumo:
Statement of problem. The use of ultrasonic tips has become an alternative for cavity preparation. However, there are concerns about this type of device, particularly with respect to intrapulpal temperatures and cavity preparation time.Purpose. The purpose of this study was to analyze pulpal temperature increases generated by an ultrasonic cavity preparation with chemical vapor deposition (CVD) tips, in comparison to preparation with a high-speed handpiece with a diamond rotary cutting instrument. The time required to complete the cavity preparation with each system was also evaluated.Material and methods. Thermocouples were positioned in the pulp chamber of 20 extracted human third molars. Slot-type cavities (3 x 3 x 2 mm) were prepared on the buccal and the lingual surfaces of each tooth. The test groups were: high-speed cavity preparation with diamond rotary cutting instruments (n = 20) and ultrasonic cavity preparation with CVD points (n = 20). During cavity preparation, the increases In pulpal temperature, and the time required for the preparation, were recorded and analyzed by Student's t test for paired samples (alpha = .05).Results. The average pulpal temperature increases were 4.3 degrees C for the high-speed preparation and 3.8 degrees C for the ultrasonic preparation, which were statistically similar (P = .052). However, significant differences were found (P < .001) for the time expended (3.3 minutes for the high-speed bur and 13.77 minutes for the ultrasound device).Conclusions. The intrapulpal temperatures produced during cavity preparation by ultrasonic tips versus high-speed bur preparation were similar. However, the use of the ultrasonic device required 4 times longer for the completion of a cavity preparation.
Resumo:
We study the propagation of waves in an elastic tube filled with an inviscid fluid. We consider the case of inhomogeneity whose mechanical and geometrical properties vary in space. We deduce a system of equations of the Boussinesq type as describing the wave propagation in the tube. Numerical simulations of these equations show that inhomogeneities prevent separation of right-going from left-going waves. Then reflected and transmitted coefficients are obtained in the case of localized constriction and localized rigidity. Next we focus on wavetrains incident on various types of anomalous regions. We show that the existence of anomalous regions modifies the wavetrain patterns. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.