271 resultados para Ultrasonic Vocalizations (USVs)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of different cleaning media on the adhesion of resin cement to feldspathic ceramic after etching.Materials and Methods: The cementation surfaces of ceramic blocks (N = 20, n = 5 per group) were etched with 10% hydrofluoric acid (HF) gel for 20 s and rinsed for 60 s. They were then randomly assigned to 4 groups: G1: air-water spray+drying (control); G2: ultrasonic cleaning in distilled water for 4 min+drying; G3: ultrasonic cleaning in 99.5% acetone for 4 min+drying; G4: ultrasonic cleaning in 70% alcohol for 4 min+drying. The ceramic blocks were silanized and cemented (RelyX ARC) to the composite blocks. Subsequently, the microtensile bond strength test (mu TBS) was performed. In addition, EDS analysis was made to assess the elemental composition of the conditioned and cleaned ceramic surfaces.Results: A significantly higher mean mu TBS was obtained when specimens had been ultrasonically cleaned in distilled water (G2: 18.8 +/- 0.4 MPa) (p < 0.05) compared to other groups (G1: 16.6 +/- 0.5; G3: 16.1 +/- 0.9; G4: 15.8 +/- 1.4) (one-way ANOVA). EDS analysis indicated the presence of F- only in G1. Dissolved precipitates after HF etching were removed by ultrasonic cleaning.Conclusion: Cleaning the HF-etched ceramic surface ultrasonically in distilled water is recommended, instead of rinsing it with air-water spray only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. The use of ultrasonic tips has become an alternative for cavity preparation. However, there are concerns about this type of device, particularly with respect to intrapulpal temperatures and cavity preparation time.Purpose. The purpose of this study was to analyze pulpal temperature increases generated by an ultrasonic cavity preparation with chemical vapor deposition (CVD) tips, in comparison to preparation with a high-speed handpiece with a diamond rotary cutting instrument. The time required to complete the cavity preparation with each system was also evaluated.Material and methods. Thermocouples were positioned in the pulp chamber of 20 extracted human third molars. Slot-type cavities (3 x 3 x 2 mm) were prepared on the buccal and the lingual surfaces of each tooth. The test groups were: high-speed cavity preparation with diamond rotary cutting instruments (n = 20) and ultrasonic cavity preparation with CVD points (n = 20). During cavity preparation, the increases In pulpal temperature, and the time required for the preparation, were recorded and analyzed by Student's t test for paired samples (alpha = .05).Results. The average pulpal temperature increases were 4.3 degrees C for the high-speed preparation and 3.8 degrees C for the ultrasonic preparation, which were statistically similar (P = .052). However, significant differences were found (P < .001) for the time expended (3.3 minutes for the high-speed bur and 13.77 minutes for the ultrasound device).Conclusions. The intrapulpal temperatures produced during cavity preparation by ultrasonic tips versus high-speed bur preparation were similar. However, the use of the ultrasonic device required 4 times longer for the completion of a cavity preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A preparation method for a new electrode material based on the LiNi0.8Co0.2O2/polyaniline (PANI) composite is reported. This material is prepared by in situ polymerization of aniline in the presence of LiNi0.8Co0.2O2 assisted by ultrasonic irradiation. The materials are characterized by XRD, TG-DTA, FTIR, XPS, SEM-EDX, AFM, nitrogen adsorption (BET surface area) and electrical conductivity measurements. PANI in the emeraldine salt form interacts with metal-oxide particles to assure good connectivity. The dc electrical conductivity measurements at room temperature indicate that conductivity values are one order of magnitude higher in the composite than in the oxide alone. This behavior determines better reversibility for Li-insertion in charge-discharge cycles compared to the pristine mixed oxide when used as electrode of lithium batteries. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ultrasonic density-measurement cell is experimentally characterized as a function of temperature. The measurement of propagation velocity and density of several liquids is performed in the 15 degrees C-40 degrees C temperature range. Results are compared to the tabulated values in the case of distilled water, showing an accuracy of 0.07% for the propagation velocity. The cell was tested with distilled water, alcohol, and homogenized milk, and density values are compared to those obtained with a pycnometer, showing 0.2% accuracy in density measurement for stabilized temperature and 0.4% accuracy under thermal gradient conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of ultrasonic attenuation and velocity in milk and low concentration water-in-oil (W/O) emulsion were conducted, using a measurement cell with a double-element transducer that eliminates diffraction losses. The milk is characterized by the attenuation coefficient, while in the case of water-in-oil emulsions, the characterization is best represented by the propagation velocity.