21 resultados para Transformation matrices
Resumo:
This paper presents a method for analyzing electromagnetic transients using real transformation matrices in three-phase systems considering the presence of ground wires. So, for the Z and Y matrices that represent the transmission line, the characteristics of ground wires are not implied in the values related to the phases. A first approach uses a real transformation matrix for the entire frequency range considered in this case. This transformation matrix is an approximation to the exact transformation matrix. For those elements related to the phases of the considered system, the transformation matrix is composed of the elements of Clarke's matrix. In part related to the ground wires, the elements of the transformation matrix must establish a relationship with the elements of the phases considering the establishment of a single homopolar reference in the mode domain. In the case of three-phase lines with the presence of two ground wires, it is unable to get the full diagonalization of the matrices Z and Y in the mode domain. This leads to the second proposal for the composition of real transformation matrix: obtain such transformation matrix from the multiplication of two real and constant matrices. In this case, the inclusion of a second matrix had the objective to minimize errors from the first proposal for the composition of the transformation matrix mentioned. © 2012 IEEE.
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which do not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show an analytical model for phase currents and voltages of the line and results it will be applied to a hypothetical two-phase. It will be shown results obtained with that will be compared to results obtained using a classical model © 2003-2012 IEEE.
Resumo:
This paper describes a computational model based on lumped elements for the mutual coupling between phases in transmission lines without the explicit use of modal transformation matrices. The self and mutual parameters and the coupling between phases are modeled using modal transformation techniques. The modal representation is developed from the intrinsic consideration of the modal transformation matrix and the resulting system of time-domain differential equations is described as state equations. Thus, a detailed profile ofthe currents and the voltages through the line can be easily calculated using numerical or analytical integration methods. However, the original contribution of the article is the proposal of a time-domain model without the successive phase/mode transformations and a practical implementation based on conventional electrical circuits, without the use of electromagnetic theory to model the coupling between phases. © 2003-2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)