126 resultados para Transformada Watershed
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
AIM: In this paper we estimate the sediment yield and other related information for a small urbanized watershed, located in Sorocaba, São Paulo State. The driving forces that produce the observed scenario are presented and discussed; METHODS: Over a year, water samples and hydrologic information concerning the river channel were collected monthly at one sampling site. In the laboratory, water samples were oven dried (80 ºC) and the total suspended solid weighed for each sample. To estimate sediment yield we used Colby's simplified method. The sediment delivery ratio (SDR) was estimated using two methods: the relief - length ratio and the bifurcation ratio; RESULTS: The annual sediment yield estimated for the period was 1,636.1 t. The total specific sediment yield was 541.7 t.km -2.y-1. Bedload was the predominant fraction. The SDR changed between 60 and 66% according to the method employed. CONCLUSIONS: The main driving forces of hydrosedimentological disequilibrium are the lack of riparian vegetation, the dumping of construction wastes at inadequate sites, and the launching of untreated sewage. Hence, if these three factors were controlled, a significant improvement in the environmental quality, particularly water quality, might be achieved.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The present work has as its goal to treat well known and interesting unidimensional cases from quantum mechanics through an unusual approach within this eld of physics. The operational method of Laplace transform, in spite of its use by Erwin Schrödinger in 1926 when treating the radial equation for the hydrogen atom, turned out to be forgotten for decades. However, the method has gained attention again for its use as a powerful tool from mathematical physics applied to the quantum mechanics, appearing in recent works. The method is specially suitable to the approach of cases where we have potential functions with even parity, because this implies in eigenfunctions with de ned parity, and since the domain of this transform ranges from 0 to ∞, it su ces that we nd the eigenfunction in the positive semi axis and, with the boundary conditions imposed over the eigenfunction at the origin plus the continuity (discontinuity) of the eigenfunction and its derivative, we make the odd, even or both parity extensions so we can get the eigenfunction along all the axis. Factoring the eigenfunction behavior at in nity and origin, we take the due care with the points that might bring us problems in the later steps of the solving process, thus we can manipulate the Schrödinger's Equation regardless of time, so that way we make it convenient to the application of Laplace transform. The Chapter 3 shows the methodology that must be followed in order to search for the solutions to each problem