45 resultados para Top of Mind
Resumo:
The properties of Langmuir and Langmuir-Blodgett (LB) films from a block copolymer with polyethylene oxide and phenylene-vinylene moieties are reported. The LB films were successfully transferred onto several types of substrates, with sufficient quality to allow for evaporation of a metallic electrode on top of the LB films to produce polymer light emitting diodes (PLEDs). The photoluminescence and electroluminescence spectra of the LB film and device were similar, featuring an emission at ca. 475 nm, from which we could infer that the emission mechanisms are essentially the same as in poly(p-phenylene) derivatives. Analogously to other PLEDs the current versus voltage characteristics of the LB-based device could be explained with the Arkhipov model according to which charge transport occurs among localized sites. The implications for nanotechnology of the level of control that may be achieved with LB devices will also be discussed.
Resumo:
The colloidal route of the sol-gel process was used to prepare supported SnO2 membranes. The influence of the sol and monoelectrolyte concentrations on the formation of the gel layer by sol-casting on the top of macroporous alpha-Al2O3 support was described. The stability of the colloidal suspension as a function of the concentrations was analyzed from creep-recovery measurements. The calcined supported membranes were characterized by nitrogen adsorption-desorption isotherms and scanning electron microscopy. The set of results show that homogeneous membrane layers containing the smallest quantity of cracks are formed in a critical interval of sol (1.01 less than or equal to[SnO2]less than or equal to 1.4 M) and electrolyte (2.O less than or equal to[Cl-]less than or equal to 4.0 mM) concentrations. The samples prepared from concentrated suspensions present a lot of interconnected cracks which favors the peeling of the coated layer. The membranes have pores of average diameter of about 1 nm.
Resumo:
Ferric and copper hexacyanoferrates (PB and CuHCF, respectively) were electrodeposited on glassy carbon electrodes providing a suitable catalytic surface for the amperometric detection of hydrogen peroxide. Additionally glucose oxidase was immobilized on top of these electrodes to form glucose biosensors. The biosensors were made by casting glucose oxidase-Nafion layers onto the surface of the modified electrodes. The operational stability of the films and the biosensors were evaluated by injecting a standard solution (5 mu M H2O2 for PB, 5 mM H2O2 for CuHCF and 1.5 mM glucose for both) over 5-10 h in a now-injection system with the electrodes polarized at - 50 (PB) and -200 mV (CuHCF) versus Ag/AgCl, respectively. The glucose biosensors demonstrated suitability for glucose determination: 0.0-2.5 mM (R-2 = 0.9977) for PB and 0.0-10 mM (R-2 = 0.9927) for CuHCF, respectively. The visualization of the redox catalyst modifiers (PB and CuHCF films) was presented by scanning electron micrographs. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The alternating conductivity, sigma*(f) = sigma'(f) + i sigma ''(f), of in situ polymerized polyaniline thin films doped with hydrochloric acid, deposited on top of an interdigitated gold line array previously deposited on glass substrates, were measured in the frequency (f) range between 0.1 Hz to 10 MHz and in the temperature range from 100 to 430 K. The results for sigma'(f) are typical of a disordered solid material: for frequencies lower than a certain hopping frequency gamma(hop), log[sigma'(f)] is frequency-independent rising almost linearly for in logf > gamma(hop). A master curve was thus obtained by plotting the real component of the conductivity using normalized scales sigma'(f)/sigma(dc) and f/gamma(hop) which is indicative of a single process operating in the whole frequency range. An expression encompassing the conduction through a disordered structure taken from previous random free energy barrier model for hopping carriers, as well a dielectric function to represent the capacitive behavior of the PAni was employed to fit the experimental results. The dielectric constant and activation energy for hopping carriers were obtained as function of the polymer doping level. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Introduction: The purpose of this study was to use photoelastic analysis to compare the system of forces generated by retraction T-loop springs made with stainless steel and titanium-molybdenum alloy (TMA) (Ormco, Glendora, Calif) with photoelastic analysis. Methods: Three photoelastic models were used to evaluate retraction T-loop springs with the same preactivations in 2 groups. In group 1, the loop was constructed with a stainless steel wire, and 2 helicoids were incorporated on top of the T-loop; in group 2, it was made with TMA and no helicoids. Results: Upon using the qualitative analysis of the fringe order in the photoelastic model, it was observed that the magnitude of force generated by the springs in group 1 was significantly higher than that in group 2. However, both had symmetry for the active and reactive units related to the system of force. Conclusions: Both springs had the same mechanical characteristics. TMA springs showed lower force levels. (Am J Orthod Dentofacial Orthop 2011;140:e123-e128)
Resumo:
The EU HIBISCUS project consisted of a series of field campaigns during the intense convective summers in 2001, 2003 and 2004 in the State of São Paulo in Brazil. Its objective was to investigate the impact of deep convection on the Tropical Tropopause Layer (TTL) and the lower stratosphere by providing a new set of observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). This was achieved using short duration research balloons to study local phenomena associated with convection over land, and long-duration balloons circumnavigating the globe to study the contrast between land and oceans.Analyses of observations of short-lived tracers, ozone and ice particles show strong episodic local updraughts of cold air across the lapse rate tropopause up to 18 or 19 km (420-440 K) in the lower stratosphere by overshooting towers. The long duration balloon and satellite measurements reveal a contrast between the composition of the lower stratosphere over land and oceanic areas, suggesting significant global impact of such events. The overshoots are shown to be well captured by non-hydrostatic meso-scale Cloud Resolving Models indicating vertical velocities of 50-60 m s(-1) at the top of the Neutral Buoyancy Level (NBL) at around 14 km, but, in contrast, are poorly represented by global Chemistry-Transport Models (CTM) forced by Numerical Weather Forecast Models (NWP) underestimating the overshooting process. Finally, the data collected by the HIBISCUS balloons have allowed a thorough evaluation of temperature NWP analyses and reanalyses, as well as satellite ozone, nitrogen oxide, water vapour and bromine oxide measurements in the tropics.
Resumo:
Immunohistochemical screening for monoclonal antibodies prepared by immunization of mice with a rat osteoblastic cell population led to identification of one antibody that reacted against a small population of cells present in the soft connective tissue compartment of 21 days fetal rat calvaria. The morphology of the cells and the immunohistochemical staining characteristics (a distinct intracellular granular pattern) suggested that the antibody might be reacting specifically against mast cells. We used combined histochemistry and immunohistochemistry to further characterize this antibody, designated RCJ102. Cryosections containing calvaria bone, soft connective tissues and skin were prepared from the top of the head of 21 days fetal rats, and from adult rats cryosections of lung, muscle, adipose tissue and small intestine were prepared. Some sections were labelled by indirect immunofluorescence with RCJ102; corresponding sections were labelled histochemically with toluidine blue. There was a direct correspondence between mast cells identified histochemically and cells labelling with RCJ102 in all tissues except intestine, in which the mast cell detectable by histochemistry were not labelled by RCJ102. These results suggest that the RCJ102 antibody will be a valuable new reagent for further elucidation of the heterogeneity described between connective tissue and intestinal mucosal mast cells.
Resumo:
The Arecaceae family comprises plants with economical importance in many Brazilian regions, for agricultural exploration or for landscaping. In great portion, species of this family present low germination velocity and percentage. This work meant to evaluate the germination and early development of seven palm species (Archontophoenix alexandrae H. Wendl. et Drude, Copernicia prunifera (Miller) H.E. Moore, Latania commersonii Gmel., Livistona chinensis R. Br., Syagrus campos-portoana Bondar, Syagrus coronata (Mart.) Beccari, Syagrus picrophylla Barb. Rod.), submitted to three kinds of seed bed plot coverings. Three 10 x 2 m seedbeds were built and filled with a mixture of sand, soil and chicken manure (1:3:0.5 proportion), where two lines were sown with each specie. On top of each seedbed, plastic covering and fifty percent screen were set allowing one third of the seedbed to full sunlight exposure. Seedbeds were irrigated by dripping system. All species had the same germination rate, regardless of the covering, by the end of the experiment (146 days after sowing), eventhough, A. alexandrae under plastic covering conditions, L. commersonii at full sunlight exposure and Syagrus campos-portoana under fifty percent shade, had reached that percentage around 51 days after sowing. The remaining species reached the greatest germination percentage earlier with some of the coverings, rather than at full sunlight exposure. For the studied conditions, covering type had no effect in leaf length and width. For leaf number, there was interaction between species x covering type for Livistona chinensis and Copernicia prunifera.
Resumo:
This paper presents the prototype of a low-cost terrestrial mobile mapping system (MMS) composed of a van, two digital video cameras, two GPS receivers, a notebook computer, and a sound frame synchronisation system. The imaging sensors are mounted as a stereo video camera on top of the vehicle together with the GPS antennae. The GPS receivers and the notebook computer are configured to record data referred to the vehicle position at a planned time interval. This position is subsequently transferred to the road images. This set of equipment and methods provide the opportunity to merge distinct techniques to make topographic maps and also to build georeferenced road image databases. Both vector maps and raster image databases, when integrated appropriately, can give spatial researchers and engineers a new technique whose application may realise better planning and analysis related to the road environment. The experimental results proved that the MMS developed at the São Paulo State University is an effective approach to inspecting road pavements, to map road marks and traffic signs, electric power poles, telephone booths, drain pipes, and many other applications important to people's safety and welfare. A small number of wad images have already been captured by the prototype as a consequence of its application in distinct projects. An efficient organisation of those images and the prompt access to them justify the need for building a georeferenced image database. By expanding it, both at the hardware and software levels, it is possible for engineers to analyse the entire road environment on their office computers.
Resumo:
Polyfluorenes are promising materials for the emitting layer of polymer light emitting devices (PLEDs) with blue emission. In this work, we report on PLEDs fabricated with Langmuir-Blodgett (LB) films of a polyfluorene derivative, namely poly(9,9-di-hexylfluorenediyl vinylene-alt-1,4-phenylenevinylene) (PDHF-PV). Y-type LB films were transferred onto ITO substrates at a surface pressure of 35 mN m-1 and with dipping speed of 3 mm min -1. A thin aluminum layer was evaporated on top of the LB film, thus yielding a sandwich structure (ITO/PDHF-PV(LB)/Al). Current-voltage (I vs V) measurements indicate that the device displays a classical behavior of a rectifying diode. The threshold value is approximately 5 V, and the onset for visible light emission occurs at ca. 10 V. From the a.c. electrical responses we infer that the active layer has a typical behavior of PLEDs where the real component of ac conductivity obeys a power-law with the frequency. Cole-Cole plots (Im(Z) vs. Re(Z)) for the device exhibit a series of semicircles, the diameter of which decreases with increasing forward bias. This PLED structure is modeled by a parallel resistance and capacitance combination, representing the dominant mechanisms of charge transport and polarization in the organic layer, in series with a resistance representing the ITO contact. Overall, the results presented here demonstrate the feasibility of LEDs made with LB films of PDHF-PV.
Resumo:
The aim of this work is to study the local impact on the upper troposphere/lower stratosphere air composition of an extreme deep convective system. For this purpose, we performed a simulation of a convective cluster composed of many individual deep convective cells that occurred near Bauru (Brazil). The simulation is performed using the 3-D mesoscale model RAMS coupled on-line with a chemistry model. The comparisons with meteorological measurements show that the model produces meteorological fields generally consistent with the observations. The present paper (part I) is devoted to the analysis of the ozone precursors (CO, NO x and non-methane volatile organic compounds) and HO x in the UTLS. The simulation results show that the distribution of CO with altitude is closely related to the upward convective motions and consecutive outflow at the top of the convective cells leading to a bulge of CO between 7 km altitude and the tropopause (around 17km altitude). The model results for CO are consistent with satellite-borne measurements at 700 hPa. The simulation also indicates enhanced amounts of NO x up to 2 ppbv in the 7-17 km altitude layer mainly produced by the lightning associated with the intense convective activity. For insoluble non-methane volatile organic compounds, the convective activity tends to significantly increase their amount in the 7-17km layer by dynamical effects. During daytime in the presence of lightning NO x, this bulge is largely reduced in the upper part of the layer for reactive species (e.g. isoprene, ethene) because of their reactions with OH that is increased on average during daytime. Lightning NO x also impacts on the oxydizing capacity of the upper troposphere by reducing on average HO x, HO 2, H 2O 2 and organic hydroperoxides. During the simulation time, the impact of convection on the air composition of the lower stratosphere is negligible for all ozone precursors although several of the simulated convective cells nearly reach the tropopause. There is no significant transport from the upper troposphere to the lower stratosphere, the isentropic barrier not being crossed by convection. The impact of the increase of ozone precursors and HO x in the upper troposphere on the ozone budget in the LS is discussed in part II of this series of papers.
Resumo:
The transition levels at the top of the two Np237 fission barriers were obtained for the first time by means of the so-called semimicroscopic combined method, which we have developed and implemented. To overcome the difficulties in dealing with large nuclear deformations, we used our developed BARRIER code, which calculates single-particle spectra in a deformed Woods-Saxon potential using a coordinate system based on Cassini ovaloids as nuclear shape parametrization. The results enabled us to describe the experimentally observed near-barrier photofission cross-section structures for Np237, as well as a subbarrier shelf, the latter being consistently interpreted in terms of the accumulation of levels at the top of the inner and outer double fission barrier of Np237. © 2006 The American Physical Society.
Resumo:
Alluvial paleosoil horizons from the 3 to 4 m high banks of the Paraná River were used to reconstruct the palaeoenvironmental history and palaeohydrological regime of the river. The bank consists of a Middle to Late Holocene sequence of sandy to silty clay layers of overbank deposits. The paleosoil horizon is located to a depth of 1.95 m from the top of the bank and is recognized as a guide horizon throughout the floodplain of the Upper Paraná River floodplain. Analyses of organic matter (δ13C and humic/fulvic acids), palynology (pollen and charcoal fragments), magnetic susceptibility, micromorphology, x-ray diffraction and 14C dating were conducted for samples from two representative profiles of the study area. Two phases were characterized in the history of the river: 1) An older phase, of stability in fluvial hydrology (stasis) with low frequency of floods, which produced conditions for soil development (14C 1700 ± 70 yr. BP). At this period, the predominance of herbaceous vegetation (determinated by pollen and δ13C analyses) suggests a climate less humid than the present one, and 2) A second phase, when climate changed to the present conditions of humidity (annual rain fall of 1600 rum) and characterized by the predominance of C3 plants. Under this new hydrological regime, the river developed an agradational floodplain, with a depositional sedimentary rate of 1.2 mm.y-1. © 2006 Gebrüder Borntraeger.
Resumo:
The presence of porosities at the dentin/adhesive interface has been observed with the use of new generation dentin bonding systems. These porosities tend to contradict the concept that etching and hybridization processes occur equally and simultaneously. Therefore, the aim of this study was to evaluate the micromechanical behavior of the hybrid layer (HL) with voids based on a self-etching adhesive system using 3-D finite element (FE) analysis. Three FE models (Mr) were built: Mr, dentin specimen (41x41x82 μm) with a regular and perfect (i.e. pore-free) HL based on a self-etching adhesive system, restored with composite resin; Mp, similar to M, but containing 25% (v/v) voids in the HL; Mpp, similar to Mr, but containing 50% (v/v) voids in the HL. A tensile load (0.03N) was applied on top of the composite resin. The stress field was obtained by using Ansys Workbench 10.0. The nodes of the base of the specimen were constrained in the x, y and z axes. The maximum principal stress (σmax) was obtained for all structures at the dentin/adhesive interface. The Mpp showed the highest peak of σmax in the HL (32.2 MPa), followed by Mp (30 MPa) and Mr (28.4 MPa). The stress concentration in the peritubular dentin was high in all models (120 MPa). All other structures positioned far from voids showed similar increase of stress. Voids incorporated into the HL raised the σmax in this region by 13.5%. This behavior might be responsible for lower bond strengths of self-etching and single-bottle adhesives, as reported in the literature.