152 resultados para Time-Fractional Multiterm Diffusion Equation
Resumo:
Context. Close encounters with (1) Ceres and (4) Vesta, the two most massive bodies in the main belt, are known to be a mechanism of dynamical mobility able to significantly alter proper elements of minor bodies, and they are the main source of dynamical mobility for medium-sized and large asteroids (D > 20 km, approximately). Recently, it has been shown that drift rates caused by close encounters with massive asteroids may change significantly on timescales of 30 Myr when different models (i.e., different numbers of massive asteroids) are considered. Aims. So far, not much attention has been given to the case of diffusion caused by the other most massive bodies in the main belt: (2) Pallas, (10) Hygiea, and (31) Euphrosyne, the third, fourth, and one of the most massive highly inclined asteroids in the main belt, respectively. Since (2) Pallas is a highly inclined object, relative velocities at encounter with other asteroids tend to be high and changes in proper elements are therefore relatively small. It was thus believed that the scattering effect caused by highly inclined objects in general should be small. Can diffusion by close encounters with these asteroids be a significant mechanism of long-term dynamical mobility? Methods. By performing simulations with symplectic integrators, we studied the problem of scattering caused by close encounters with (2) Pallas, (10) Hygiea, and (31) Euphrosyne when only the massive asteroids (and the eight planets) are considered, and the other massive main belt asteroids and non-gravitational forces are also accounted for. Results. By finding relatively small values of drift rates for (2) Pallas, we confirm that orbital scattering by this highly inclined object is indeed a minor effect. Unexpectedly, however, we obtained values of drift rates for changes in proper semi-major axis a caused by (10) Hygiea and (31) Euphrosyne larger than what was previously found for scattering by (4) Vesta. These high rates may have repercussions on the orbital evolution and age estimate of their respective families. © 2013 ESO.
Resumo:
We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island. © 2013 American Physical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper is concerned with the controllability and stabilizability problem for control systems described by a time-varyinglinear abstract differential equation with distributed delay in the state variables. An approximate controllability propertyis established, and for periodic systems, the stabilization problem is studied. Assuming that the semigroup of operatorsassociated with the uncontrolled and non delayed equation is compact, and using the characterization of the asymptoticstability in terms of the spectrum of the monodromy operator of the uncontrolled system, it is shown that the approximatecontrollability property is a sufficient condition for the existence of a periodic feedback control law that stabilizes thesystem. The result is extended to include some systems which are asymptotically periodic. Copyright © 2014 John Wiley &Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to refine the solution given by the classical logistic equation and extend its range of applications in the study of tumor dynamics, we propose and solve a generalization of this equation, using the so-called Fractional Calculus, i.e., we replace the ordinary derivative of order 1, in one version of the usual equation, by a non-integer derivative of order 0 < α < 1, and recover the classical solution as a particular case. Finally, we analyze the applicability of this model to describe the growth of cancer tumors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dengue virus is transmitted in regions previously infested with the mosquito Aedes aegypti. To assess the spreading and establishment of the dengue disease vector, a mathematical model is developed that takes into account the diffusion and advection phenomena. A discrete model based on the cellular automata approach, which is a good framework to deal with small populations, is also developed to be compared with the continuous modeling.
Resumo:
A procedure to model optical diffused-channel waveguides is presented in this work. The dielectric waveguides present anisotropic refractive indexes which are calculated from the proton concentration. The proton concentration inside the channel is calculated by the anisotropic 2D-linear diffusion equation and converted to the refractive indexes using mathematical relations obtained from experimental data, the arbitrary refractive index profile is modeled by a. nodal expansion in the base functions. The TE and TM-like propagation properties (effective index) and the electromagnetic fields for well-annealed proton-exchanged (APE) LiNbO3 waveguides are computed by the finite element method.
Resumo:
Using the axially-symmetric time-dependent Gross-Pitaevskii equation we study the phase coherence in a repulsive Bose-Einstein condensate (BEC) trapped by a harmonic and an one-dimensional optical lattice potential to describe the experiment by Cataliotti et al. on atomic Josephson oscillation [Science 293, 843 (2001)]. The phase coherence is maintained after the BEC is set into oscillation by a small displacement of the magnetic trap along the optical lattice. The phase coherence in the presence of oscillating neutral current across an array of Josephson junctions manifests in an interference pattern formed upon free expansion of the BEC. The numerical response of the system to a large displacement of the magnetic trap is a classical transition from a coherent superfluid to an insulator regime and a subsequent destruction of the interference pattern in agreement With the more recent experiment by Cataliotti et al. [New J. Phys. 5, 71 (2003)].
Resumo:
Using the axially symmetric time-dependent Gross-Pitaevskii equation we study the Josephson oscillation of an attractive Bose-Einstein condensate (BEC) in a one-dimensional periodic optical-lattice potential. We find that the Josephson frequency is virtually independent of the number of atoms in the BEC and of the interatomic interaction (attractive or repulsive). We study the dependence of the Josephson frequency on the laser wave length and the strength of the optical-lattice potential. For a fixed laser wave length (795 nm), the Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti [Science 293, 843 (2001)]. For a fixed strength, the Josephson frequency remains essentially unchanged for a reasonable variation of laser wave length around 800 nm. However, the Josephson oscillation is disrupted with the increase of laser wave length beyond 2000 nm leading to a collapse of a sufficiently attractive BEC. These features of a Josephson oscillation can be tested experimentally with present setups.
Resumo:
Based on the time-dependent Gross-Pitaevskii equation we study the evolution of a collapsing and exploding Bose-Einstein condensate in different trap symmetries to see the effect of confinement on collapse and subsequent explosion, which can be verified in future experiments. We make a prediction for the evolution of the shape of the condensate and the number of atoms in it for different trap symmetries (cigar to pancake) as well as in the presence of an optical lattice potential. We also make a prediction for the jet formation in different cases when the collapse is suddenly terminated by changing the scattering length to zero via a Feshbach resonance. In addition to the usual global collapse to the center of the condensate, in the presence of an optical-lattice potential one could also have in certain cases independent collapse of parts of the condensate to local centers, which could be verified in experiments.