88 resultados para Thermoplastic matrix composites


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mechanical strength of polyethylene terephthalate (PET) fibres and polymethyl methacrylate (PMMA) matrix composites were studied with particular interest on the effects of oxygen and argon plasma treated fibres. PET. fibres were treated in a radio frequency plasma reactor using argon or oxygen for different treatment times to increase the interface adhesion. Fibre volume fraction was measured through digital image analysis. Elastic moduli resulted between 3 GPa for untreated to 6 GPa for treated composites. Tensile tests on PET fibres showed that plasma treatment caused a decrease in average tensile strength compared to untreated fibres. Fracture analysis confirmed the increase in interfacial adhesion due to plasma treatment. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims and objectives: The behavior of polymer-matrix composite is dependent on the degree of conversion. The aim of this study was to evaluate the degree of conversion of two resin cements following storage at 37°C immediately, 24 and 48 hours, and 7 days after light-curing by FTIR analysis. Materials and methods: The specimens were made in a metallic mold and cured with blue LED with power density of 500 mW/cm2 for 30 seconds. The specimens were pulverized, pressed with KBr and analyzed with FTIR following storage times. Statistical analysis used: ANOVA (two-way) and Tukey's post hoc. Results: To the polymer-matrix composites between 24 and 48 hours does not show a significant increase (p > 0.05), however, the highest values were found after 7 days. Conclusion: The polymer-matrix composites used in this study showed similarity on the degree of conversion and increased of according to the time of storage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The corrosion behaviour of metal matrix composites (MMCs) is strictly linked with the presence of heterogeneities such as reinforcement phase, microcrevices, porosity, secondary phase precipitates, and interaction products. Most of the literature related to corrosion behaviour of aluminium matrix composites (AMCs) is focused on SiC reinforced AMCs. On the other hand, there is very limited information available in the literature related to the tribocorrosion behaviour of AMCs. Therefore, the present work aims to investigate corrosion and tribocorrosion behaviour of Al-Si-Cu-Mg alloy matrix composites reinforced with B4C particulates. Corrosion behaviour of 15 and 19% (vol) B4C reinforced Al-Si-Cu-Mg matrix composites and the base alloy was investigated in 0.05M NaCl solution by performing immersion tests and potentiodynamic polarisation tests. Tribocorrosion behaviour of Al-Si-Cu-Mg alloy and its composites were also investigated in 0.05M NaCl solution. The tests were carried out against alumina ball using a reciprocating ball-on-plate tribometer. Electrochemical measurements were performed before, during, and after the sliding tests together with the recording of the tangential force. Results suggest that particle addition did not affect significantly the tendency of corrosion of Al-Si-Cu-Mg alloy without mechanical interactions. During the tribocorrosion tests, the counter material was found to slide mainly on the B4C particles, which protected the matrix alloy from severe wear damage. Furthermore, the wear debris were accumulated on the worn surfaces and entrapped between the reinforcing particles. Therefore, the tendency of corrosion and the corrosion rate decreased in Al-Si-Cu-Mg matrix B4C reinforced composites during the sliding in 0.05M NaCl solution. © 2013 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work polymeric composites reinforced with cotton fibers, from the textile industry, were developed in order to manufacture printed circuit boards. It was used expanded polystyrene (EPS) as a thermoplastic matrix by melting it. For the obtention of 10% and 15% of fiber volume fraction in cotton fibers composites, it was used wasted cotton fibers as an incentive of recycling and reusing of the domestic and industrial wastes as well as for Expanded Polystyrene(EPS). The mechanical properties of the composites were evaluated by tensile and flexural strength from standardized test methods. Composites were characterized by a Scanning Electron Microscopy (SEM), Thermogravimetry (TG/DTG), Differential Scanning Calorimetry (DSC) and dielectric analysis. The analysis of the results showed that fiber in the composite directly influenced in the thermal and mechanical properties

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work polystyrene composites reinforced with recycled sisal fibers were processed, in order to apply in the manufacture of printed circuit boards. A thermoplastic matrix of recycled polystyrene was used, this material came from waste expanded polystyrene (EPS) used in appliance's packages. Composites were prepared with 15% and 25% of sisal fibers. To obtain the composites, wasted EPS and natural sisal fibers were chosen, to encourage recycling and reuse of household waste and also the use of renewable resources. The composites were analyzed by standard tensile and flexural test, in order to verify the mechanical properties of the material. The characterization of the composite was done by scanning electron microscopy (SEM) , thermogravimetry (TGA / DTG) , differential scanning calorimetry (DSC) and dielectric analysis . The analysis of the results showed that the percentage of fibers in the composite influences directly the thermal and mechanical properties. Plates with a lower percentage of fibers showed superior properties at a higher percentage. The composite material obtained is easy to process and it's use is feasible for the confection of printed circuit boards, considering it's mechanical, thermal and insulative properties

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Syntactic Functionally Graded Metal Matrix Composites (SFGMMC) are a type of composites reinforced by microballoons exhibiting a graded reinforcement distribution. These materials constitute a promising new generation of lightweight structural materials for aerospace, marine and shielding/insulation applications. In this work, A356 alloy reinforced with silica-alumina microballoons (SiO2-Al2O3) was processed by casting techniques. The influence of the microballoon distribution gradient on the corrosion behaviour of the composite was investigated by potentiodynamic polarisation and Electrochemical Impedance Spectroscopy (EIS). Composite surfaces were analysed before and after testing by Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) to determine the influence of microstructural changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alumina/alumina wear couple can lower the wear rates and thus metallic ion releasing on load bearing metallic implant materials. However, the low fracture toughness of ceramics is still a major concern. Therefore, the present study aims to process and to triboelectrochemically characterise the 5 and 10 vol.-%Al2O3 reinforced CoCrMo matrix composites. Corrosion and tribocorrosion behaviour of the composites were investigated in 8 g L−1 NaCl solution at body temperature. Corroded and worn surfaces were investigated by a field emission gun scanning electron microscope equipped with energy dispersive X-ray spectroscopy. After tribocorrosion experiments, wear rates were calculated using a profilometer. Results suggest that Al2O3 particle addition decreased the tendency of CoCrMo alloy to corrosion under both static and tribocorrosion conditions. However, no significant influence on the corrosion and wear rates was observed in composites mainly due to increased porosity and insufficient matrix/reinforcement bonding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ferroelectric ceramic particles based on lead titanate zirconate (PZT) were dispersed in a polymer matrix based on castor oil. After the poling process, the pyroelectric activity of this composite was measured using a direct method in which a linear heating rate was applied to the pre-poled samples. The pyroelectric coefficient at 343 K is comparable with that of a PZT-poly(vinylidene fluoride) (PVDF) composite and significantly higher than that of PVDF. © 1998 Kluwer Academic Publishers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterized as materials for sensor applications. The piezoelectric coefficients d 31 and d 33 were measured with the usual technique. The piezoelectric charge constant d 33 yields values up to ≤24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.