74 resultados para The Lattice Solid Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform variational calculations of heavy-light meson masses using a fitted formula to a lattice two-quark potential. We examine the light quark mass dependence of the meson mass using the Schrodinger equation and the Dirac equation. For the Dirac equation, a saddle-point variational principle is employed, since the Dirac Hamiltonian is not bound from below.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The description of the short-range part of the nucleon-nucleon forces in terms of quark degrees of freedom is tested against experimental observables. We consider, for this purpose, a model where the short-range part of the forces is given by the quark cluster model and the long- and medium-range forces by well established meson exchanges. The investigation is performed using different quark cluster models coming from different sets of quark-quark interactions. The predictions of this model are compared not only with the phase shifts but also directly with the experimental observables. Agreement with the existing pp and np world set of data is poor. This suggests that the current description of the nucleon-nucleon interaction, at short distances, in the framework of the nonrelativistic quark models, is at present only qualitative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present preliminary results of our numerical study of the critical dynamics of percolation observables for the two-dimensional Ising model. We consider the (Monte-Carlo) short-time evolution of the system obtained with a local heat-bath method and with the global Swendsen-Wang algorithm. In both cases, we find qualitatively different dynamic behaviors for the magnetization and Omega, the order parameter of the percolation transition. This may have implications for the recent attempts to describe the dynamics of the QCD phase transition using cluster observables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reassess the method of the linear delta expansion for the calculation of effective potentials in superspace, by adopting the improved version of the super-Feynman rules in the framework of the O'Raifeartaigh model for spontaneous supersymmetry breaking. The effective potential is calculated using both the fastest apparent convergence and the principle of minimal sensitivity criteria and the consistency and efficacy of the method are checked in deriving the Coleman-Weinberg potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamical properties of a classical particle bouncing between two rigid walls, in the presence of a drag force, are studied for the case where one wall is fixed and the other one moves periodically in time. The system is described in terms of a two-dimensional nonlinear map obtained by solution of the relevant differential equations. It is shown that the structure of the KAM curves and the chaotic sea is destroyed as the drag force is introduced. At high energy, the velocity of the particle decreases linearly with increasing iteration number, but with a small superimposed sinusoidal modulation. If the motion passes near enough to a fixed point, the particle approaches it exponentially as the iteration number evolves, with a speed of approach that depends on the strength of the drag force. For a simplified version of the model it is shown that, at low energies corresponding to the region of the chaotic sea in the non-dissipative model, the particle wanders in a chaotic transient that depends on the strength of the drag coefficient. However, the KAM islands survive in the presence of dissipation. It is confirmed that the fixed points and periodic orbits go over smoothly into the orbits of the well-known (non-dissipative) Fermi-Ulam model as the drag force goes to zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some dynamical properties of a particle suffering the action of a generic drag force are obtained for a dissipative Fermi Acceleration model. The dissipation is introduced via a viscous drag force, like a gas, and is assumed to be proportional to a power of the velocity: F alpha -nu(gamma). The dynamics is described by a two-dimensional nonlinear area-contracting mapping obtained via the solution of Newton's second law of motion. We prove analytically that the decay of high energy is given by a continued fraction which recovers the following expressions: (i) linear for gamma = 1; (ii) exponential for gamma = 2; and (iii) second-degree polynomial type for gamma = 1.5. Our results are discussed for both the complete version and the simplified version. The procedure used in the present paper can be extended to many different kinds of system, including a class of billiards problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se1-yTey and Ge1-ySnySe2.5 glasses, with compositions Y less than or equal to 0.5 and Y less than or equal to 0.6 respectively, are investigated. These glasses show a glass transition temperature (T-g) above the stability limit, indicated by the Adiabatic Nucleation Model (ANM). This effect has to be so because, other-wise, when cooled, these undercooled liquids would crystallize by generalized nucleation near the stability limit and no T-g could be observed. This shows that Se1-yTey glasses for Y < 0.5 are structurally stable. Limiting cases are pure Te and Se50Te50, which have T'(g)'s on the stability limit. Pure amorphous Te has to be obtained by fast quenching techniques, where the effective (fast quenching) T-g(*) is higher and Se50Te50 tends to crystallize easily. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we numerically simulated the motion of particles coorbital to a small satellite under the Poynting-Robertson light drag effect in order to verify the symmetry suggested by Dermott et al. (1979, 1980) on their ring confinement model. The results reveal a more complex scenario, especially for very small particles (micrometer sizes), which present chaotic motion. Despite the complexity of the trajectories the particles remain confined inside the coorbital region. However, the dissipative force caused by the solar radiation also includes the radiation pressure component which can change this configuration. Our results show that the inclusion of the radiation pressure, which is not present in the original confinement model, can destroy the configuration in a time much shorter than the survival time predicted for a dust particle in a horseshoe orbit with a satellite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the Langevin approach for stochastic processes, we study the renormalizability of the massive Thirring model. At finite fictitious time, we prove the absence of induced quadrilinear counterterms by verifying the cancellation of the divergencies of graphs with four external lines. This implies that the vanishing of the renormalization group beta function already occurs at finite times.