93 resultados para Techniques: Image Processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated the influence of surface abrasion of transfer copings to obtain a precise master cast for a partially edentulous restoration with different inclinations. Materials and Methods: Replicas (N = 30) of a metal matrix (control group) containing two implants at 90° and 65° in relation to the benchtop were obtained using a polyether impression material and three impression techniques: square impression copings splint with dental floss and autopolymerizing acrylic resin (TRS), square impression copings abraded with aluminum oxide (TA), and square impression copings abraded with aluminum oxide and adhesive-coated (TAA). The replicas obtained in type V stone were digitalized, and the images were exported to AutoCAD software to perform the readings of possible degree alterations in implant inclinations. The results were submitted to analysis of variance (ANOVA) and Tukey test (α < 0.05). Results: Comparing the techniques with regard to the 90° implant inclination, no statistical difference was observed between the three techniques and the control group. Analyzing the three techniques with regard to the 65° implant inclination, no significant difference was seen between technique TA and the control group. Conclusions: Technique TA presented more accurate master casts than TRS and TAA techniques. The angulated implant (65°) tended to generate more imprecise master casts than implants perpendicular to the surface. © 2008 by The American College of Prosthodontists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a new partial differential equation based method is presented with a view to denoising images having textures. The proposed model combines a nonlinear anisotropic diffusion filter with recent harmonic analysis techniques. A wave atom shrinkage allied to detection by gradient technique is used to guide the diffusion process so as to smooth and maintain essential image characteristics. Two forcing terms are used to maintain and improve edges, boundaries and oscillatory features of an image having irregular details and texture. Experimental results show the performance of our model for texture preserving denoising when compared to recent methods in literature. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main application area in this project, is to deploy image processing and segmentation techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. Thereby, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for image recognition. Hence, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave computational platforms, along with the application of customized Back-propagation Multilayer Perceptron (MLP) algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of segmented images in which reasonably accurate results were obtained. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency in image classification tasks can be improved using combined information provided by several sources, such as shape, color, and texture visual properties. Although many works proposed to combine different feature vectors, we model the descriptor combination as an optimization problem to be addressed by evolutionary-based techniques, which compute distances between samples that maximize their separability in the feature space. The robustness of the proposed technique is assessed by the Optimum-Path Forest classifier. Experiments showed that the proposed methodology can outperform individual information provided by single descriptors in well-known public datasets. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital techniques have been developed and validated to assess semiquantitatively immunohistochemical nuclear staining. Currently visual classification is the standard for qualitative nuclear evaluation. Analysis of pixels that represents the immunohistochemical labeling can be more sensitive, reproducible and objective than visual grading. This study compared two semiquantitative techniques of digital image analysis with three techniques of visual analysis imaging to estimate the p53 nuclear immunostaining. Methods: Sixty-three sun-exposed forearm-skin biopsies were photographed and submitted to three visual analyses of images: the qualitative visual evaluation method (0 to 4 +), the percentage of labeled nuclei and HSCORE. Digital image analysis was performed using ImageJ 1.45p; the density of nuclei was scored per ephitelial area (DensNU) and the pixel density was established in marked suprabasal epithelium (DensPSB). Results: Statistical significance was found in: the agreement and correlation among the visual estimates of evaluators, correlation among the median visual score of the evaluators, the HSCORE and the percentage of marked nuclei with the DensNU and DensPSB estimates. DensNU was strongly correlated to the percentage of p53-marked nuclei in the epidermis, and DensPSB with the HSCORE. Conclusion: The parameters presented herein can be applied in routine analysis of immunohistochemical nuclear staining of epidermis. © 2012 John Wiley & Sons A/S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image segmentation is a process frequently used in several different areas including Cartography. Feature extraction is a very troublesome task, and successful results require more complex techniques and good quality data. The aims of this paper is to study Digital Image Processing techniques, with emphasis in Mathematical Morphology, to use Remote Sensing imagery, making image segmentation, using morphological operators, mainly the multi-scale morphological gradient operator. In the segmentation process, pre-processing operators of Mathematical Morphology were used, and the multi-scales gradient was implemented to create one of the images used as marker image. Orbital image of the Landsat satellite, sensor TM was used. The MATLAB software was used in the implementation of the routines. With the accomplishment of tests, the performance of the implemented operators was verified and carried through the analysis of the results. The extration of linear feature, using mathematical morphology techniques, can contribute in cartographic applications, as cartographic products updating. The comparison to the best result obtained was performed by means of the morphology with conventional techniques of features extraction. © Springer-Verlag 2004.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article describes the development of a method for analysis of the shape of the stretch zone surface based on parallax measurement theory and using digital image processing techniques. Accurate criteria for the definition of the boundaries of the stretch zone are established from profiles of fracture surfaces obtained from crack tip opening displacement tests on Al-7050 alloy samples. The elevation profiles behavior analysis is based on stretch zone width and height parameters. It is concluded that the geometry of the stretch zone profiles under plane strain conditions can be described by a semi-parabolic relationship. (C) Elsevier B.V., 1999. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJETIVOS: Avaliar o posicionamento palpebral em portadores de cavidade anoftálmica com e sem prótese ocular externa, utilizando o processamento de imagem digital. MÉTODOS: Dezoito pacientes foram avaliados qualitativa e quantitativamente na Faculdade de Medicina de Botucatu - Universidade Estadual Paulista - UNESP, com e sem a prótese externa. Usando imagens obtidas por filmadora e processadas usando o programa Scion Image, mediu-se a altura do sulco palpebral superior, a altura da fenda palpebral e os ângulos palpebrais dos cantos interno e externo. RESULTADOS: Pseudo-estrabismo e sulco palpebral superior profundo foram as alterações mais freqüentes ao exame externo. Houve diferença significativa em todas as variáveis estudadas, com diminuição da altura do sulco palpebral superior, aumento da área da fenda palpebral e aumento dos ângulos palpebrais interno e externo quando o paciente estava usando a prótese externa. CONCLUSÃO: Todos os pacientes avaliados apresentaram algum tipo de anormalidade órbito-palpebral, o que reflete a dificuldade em se proporcionar ao portador de cavidade anoftálmica um aspecto idêntico ao que existe na órbita normal. O processamento de imagens digitais permitiu avaliação objetiva das dimensões óculo-palpebrais, o que poderá contribuir nas avaliações seqüenciais dos portadores de cavidade anoftálmica.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A body of research has developed within the context of nonlinear signal and image processing that deals with the automatic, statistical design of digital window-based filters. Based on pairs of ideal and observed signals, a filter is designed in an effort to minimize the error between the ideal and filtered signals. The goodness of an optimal filter depends on the relation between the ideal and observed signals, but the goodness of a designed filter also depends on the amount of sample data from which it is designed. In order to lessen the design cost, a filter is often chosen from a given class of filters, thereby constraining the optimization and increasing the error of the optimal filter. To a great extent, the problem of filter design concerns striking the correct balance between the degree of constraint and the design cost. From a different perspective and in a different context, the problem of constraint versus sample size has been a major focus of study within the theory of pattern recognition. This paper discusses the design problem for nonlinear signal processing, shows how the issue naturally transitions into pattern recognition, and then provides a review of salient related pattern-recognition theory. In particular, it discusses classification rules, constrained classification, the Vapnik-Chervonenkis theory, and implications of that theory for morphological classifiers and neural networks. The paper closes by discussing some design approaches developed for nonlinear signal processing, and how the nature of these naturally lead to a decomposition of the error of a designed filter into a sum of the following components: the Bayes error of the unconstrained optimal filter, the cost of constraint, the cost of reducing complexity by compressing the original signal distribution, the design cost, and the contribution of prior knowledge to a decrease in the error. The main purpose of the paper is to present fundamental principles of pattern recognition theory within the framework of active research in nonlinear signal processing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The identification of ground control on photographs or images is usually carried out by a human operator, who uses his natural skills to make interpretations. In Digital Photogrammetry, which uses techniques of digital image processing extraction of ground control can be automated by using an approach based on relational matching and a heuristic that uses the analytical relation between straight features of object space and its homologous in the image space. A build-in self-diagnosis is also used in this method. It is based on implementation of data snooping statistic test in the process of spatial resection using the Iterated Extended Kalman Filtering (IEKF). The aim of this paper is to present the basic principles of the proposed approach and results based on real data.