142 resultados para TRANSFORMER NONLINEAR MODEL
Resumo:
O objetivo deste trabalho foi determinar a associação genética entre escores visuais de conformação e as características de ganho de peso médio diário e de velocidade de crescimento em bovinos da raça Angus à desmama e ao sobreano. Os componentes de covariância foram estimados por modelo animal de análise tetracaracterística, com uso do método de inferência bayesiana, tendo-se assumido o modelo linear para: ganho de peso médio diário do nascimento à desmama (GMD) e da desmama ao sobreano (GMS); e velocidade de ganho de peso do nascimento à desmama (VD) e da desmama ao sobreano (VS). Um modelo não linear (de limiar) foi utilizado para os escores de conformação à desmama (CD) e ao sobreano (CS). As médias a posteriori, para a herdabilidade direta, foram: 0,12±0,023 (CD), 0,15±0,020 (GMD), 0,15±0,024 (VD), 0,17±0,020 (CS), 0,17±0,023(GMS), e 0,17±0,023 (VS). A correlação genética variou de -0,09±0,11 a 0,60±0,06, entre os escores CD e CS e as características de ganho médio diário de peso e velocidade de ganho de peso. A correlação entre CD e CS foi 0,52±0,089. A seleção direta para escores visuais de conformação, ganho médio diário e velocidade de ganho responde de forma lenta à seleção, tanto à desmama como ao sobreano.
Resumo:
Heritability estimates and genetic correlations were obtained for body weight and scrotal circumference, adjusted, respectively, to 12 (BW12 and SC12) and 18 (BW18 and SC18) months of age, for 10 742 male Nellore cattle. The adjustments to SC12 and SC18 were made using a nonlinear logistic function, while BW12 and BW18 were obtained by linear adjustment. The contemporary groups (CGs) were defined from animals born on the same farm, in the same year and birth season. The mean heritability estimates obtained using the restricted maximum likelihood method in bi-trait analysis were 0.25, 0.25, 0.29 and 0.42 for BW12 BW18, SC12 and SC18, respectively. The genetic correlations were 0.30 +/- 0.11, 0.21 +/- 0.13, 0.21 +/- 0.11, -0.08 +/- 0.15, 0.16 +/- 0.12 and 0.89 +/- 0.04 between the traits BW12 and BW18; BW12 and SC12; BW12 and SC18; BW18 and SC12; BW18 and SC18; and SC12 and SC18. The heritability for SC18 was considerably greater than for SC12 suggesting that this should be included as a selection criterion. The genetic correlation between BW18 and SC12 was close to zero, indicating that these traits did not influence each other The contrary occurred between SC12 and SC18, indicating that selection using one of these could alter the other Because of the mean magnitudes of heritabilities in the various measurements of weight and scrotal perimeter it is suggested that the practice of individual selection for these traits is possible.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work was to determine nutrient deposition on the carcass of bullfrog (Lithobates catesbeianus) tadpoles using a nonlinear model. A total of 2,700 tadpoles with an average weight of 0.039 g were used. Commercial ground feed containing 55% crude protein was offered ad libitum. The animals were weighed and evaluated every ten days for analysis of crude protein, ether extract, water, and mineral salt contents. The parameters of the Gompertz model were estimated by the modified Gauss-Newton method, and the deposition rates (g per day) over time were calculated by the resulting equation. The values found for the parameters of the Gompertz equation, used to describe nutrient deposition on tadpole carcass, showed biological interpretation. Maximum deposition rate (t*) was observed on the 36.2331th day for protein, on the 37.1420th day for water, on the 35.2971th day for mineral salt, and on the 41.3547th day for fat. Nutrient intake from the diet is higher than the deposition rate on the tadpole carcass.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
In this paper, the optimal reactive power planning problem under risk is presented. The classical mixed-integer nonlinear model for reactive power planning is expanded into two stage stochastic model considering risk. This new model considers uncertainty on the demand load. The risk is quantified by a factor introduced into the objective function and is identified as the variance of the random variables. Finally numerical results illustrate the performance of the proposed model, that is applied to IEEE 30-bus test system to determine optimal amount and location for reactive power expansion.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A neural model for solving nonlinear optimization problems is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The network is shown to be completely stable and globally convergent to the solutions of nonlinear optimization problems. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are presented to validate the developed methodology.
Design and analysis of an efficient neural network model for solving nonlinear optimization problems
Resumo:
This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.