61 resultados para TOOL WEAR CHARACTERISTICS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the joint economic design of x̄ and R charts when the occurrence times of assignable causes follow Weibull distributions with increasing failure rates. The variable quality characteristic is assumed to be normally distributed and the process is subject to two independent assignable causes (such as tool wear-out, overheating, or vibration). One cause changes the process mean and the other changes the process variance. However, the occurrence of one kind of assignable cause does not preclude the occurrence of the other. A cost model is developed and a non-uniform sampling interval scheme is adopted. A two-step search procedure is employed to determine the optimum design parameters. Finally, a sensitivity analysis of the model is conducted, and the cost savings associated with the use of non-uniform sampling intervals instead of constant sampling intervals are evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grinding - the final machining process of a workpiece - requires large amounts of cutting fluids for the lubrication, cooling and removal of chips. These fluids are highly aggressive to the environment. With the technological advances of recent years, the worldwide trend is to produce increasingly sophisticated components with very strict geometric and dimensional tolerances, good surface finish, at low costs, and particularly without damaging the environment. The latter requirement can be achieved by recycling cutting fluids, which is a costly solution, or by drastically reducing the amount of cutting fluids employed in the grinding process. This alternative was investigated here by varying the plunge velocity in the plunge cylindrical grinding of ABNT D6 steel, rationalizing the application of two cutting fluids and using a superabrasive CBN (cubic boron nitride) grinding wheel with vitrified binder to evaluate the output parameters of tangential cutting force, acoustic emission, roughness, roundness, tool wear, residual stress and surface integrity, using scanning electron microscopy (SEM) to examine the test specimens. The performance of the cutting fluid, grinding wheel and plunge velocity were analyzed to identify the best machining conditions which allowed for a reduction of the cutting fluid volume, reducing the machining time without impairing the geometric and dimensional parameters, and the surface finish and integrity of the machined components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been a great interest for improving the machining of cast iron materials in the automotive and other industries. Comparative studies for tool used to machine grey cast iron (CI) and compacted graphite iron (CGI) on dry machining were also performed in order to find out why in this case the tool lifetime is not significantly higher. However the machining these materials while considering turning with the traditional high-speed steel and carbide cutting tools present any disadvantages. One of these disadvantages is that all the traditional machining processes involve the cooling fluid to remove the heat generated on workpiece due to friction during cutting. This paper present a new generation of ceramic cutting tool exhibiting improved properties and important advances in machining CI and CGI. The tool performance was analyzed in function of flank wear, temperature and roughness, while can be observed that main effects were found for tool wear, were abrasion to CI and inter-diffusion of constituting elements between tool and CGI, causing crater. However the difference in tool lifetime can be explained by the formation of a MnS layer on the tool surface in the case of grey CI. This layer is missing in the case of CGI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An alternative for grinding of sintered ceramic is the machining on the green state of the ceramic, which presents easy cutting without the introduction of harmful defects to its mechanical resistance. However, after sintering there are invariably distortions caused by the heterogeneous distribution of density gradients, which are located in the most outlying portions of the compacted workpiece. In order to minimize these density gradients, this study examined the influence of different allowance values and their corresponding influence in distortion after sintering alumina specimens with 99.8 % purity by turning operation using cemented carbide tool. Besides distortion, other output variables were analyzed, such as tool wear, cutting force and surface roughness of green and sintered ceramics. Results showed a distortion reduction up to 81.4%. Green machining is beneficial for reducing surface roughness in both green and sintered states. Cutting tool wear has a direct influence on surface roughness and cutting force.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper is to optimize the machining of Ti-6Al-4V alloy, by studying the chip formation, roughness and tool wear for different cooling conditions. The results were compared between cooling methods, minimal quantity of fluid (MQF) and flooding, and also without fluid for the tool H13A. The turning of Ti-6Al-4V has shown good results on roughness (0, 8μm) and tool life, which was 11% lower with MQF than with the flooding method. The tool wear causes variation of the shear angle, which promotes strength hardening of the chip. As a result, the machined surface could be damaged. The use of the cutting fluid helps to save the cutting edge and could reduce the strength hardening. Nevertheless, it could also facilitate the formation of built-up edge. The nucleation of alpha lamellar colonies can occur due to a combination of deformation rates and temperature, mainly when the flooding is used, but it's not conclusive. The lamellar colonies were also found with the MQF in some regions, however, this structure did not show hardness variation compared to equiaxial. For all this reasons, the machining parameters might be carefully chosen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal machining is the complex process due the used cutting parameters. In metal cutting process, materials of workpiece differ widely in their ability to deform plastically, to fracture and to sustain tensile stresses. Moreover, the material involved in the process has a great influence in these operations. The Ti-6Al-4V alloy is very used in the aeronautical industry, mainly in the manufacture of engines, has very important properties such the mechanical and corrosion resistance in high te mperatures. The turning of the Ti-Al-4V alloy is very difficult due the rapid tool wear. Such behavior result of the its low thermal conductivity in addition the high reactivity with the cutting tool. The formed chip is segmented and regions of the large deformation named shear bands plows formed. The machinability of the cutting process can be evaluated by several measures including power consume, machined surface quality, tool wear, tool life, microstructure and morphology of the obtained chip. This paper studies the effect of cutting parameters, speed and feed rates, in the tool wear and chip properties using uncoating cemented carbide tool. Microe-structural characterization of the chip and tool wear was performed using scanning electron microscopy (SEM) and Light Optical Mcroscopy (LOM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, different methods of cutting fluid application are used in turning of a difficult-to-machine steel (SAE EV-8). Initially, a semisynthetic cutting fluid was applied using a conventional method (i.e. overhead flood cooling), minimum quantity of cutting fluid, and pulverization. A lubricant of vegetable oil (minimum quantity of lubricant) was also applied using the minimum quantity method. Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface, top surface of the chip (between workpiece and chip) and tool-workpiece contact. Moreover, two other methods were used: an interflow between conventional application and chip-tool interface jet (combined method) and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high-pressure system using a piston pump for generating a cutting fluid jet, a venturi for fluid application (minimum quantity of cutting fluid and minimum quantity of lubricant) and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. Among the results, it can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure, such as minimum quantity of volume and pulverization, when considering just the cutting tool wear. © 2013 IMechE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)