98 resultados para THIN PLATINUM FILMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) is an electroluminescent (EL) material that can emit light in different regions of electromagnetic spectrum when electrically excited. Since ZnO is chemically stable, inexpensive and environmentally friendly material, its EL property can be useful to construct solid-state lamps for illumination or as UV emitter. We present here two wet chemical methods to prepare ZnO thin-films: the Pechini method and the sol-gel method, with both methods resulting in crystalline and transparent films with transmittance > 85% at 550 nm. These films were used to make thin-film electroluminescent devices (TFELD) using two different insulator layers: lithium fluoride (LiF) or silica (SiO2). All the devices exhibit at least two wide emission bands in the visible range centered at 420 nm and at 380 nm attributed to the electronic defects in the ZnO optical band gap. Besides these two bands, the device using SiO2 and ZnO film obtained via sol-gel exhibits an additional band in the UV range centered at 350 nm which can be attributed to excitonic emission. These emission bands of ZnO can transfer their energy when a proper dopant is present. For the devices produced the voltage-current characteristics were measured in a specific range of applied voltage. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germanate glasses are of interest for optoelectronic applications because they combine high mechanical strength, high chemical durability and temperature stability with a large transmission window (400 to 4500 nm) and high refractive index (2.0). GeO2-PbO-Bi2O3 glasses doped with Y-b(3+) were fabricated by melting powders in a crucible and then pouring them in a brass mold. Energy Dispersive Spectroscopy showed that the glass composition has a high spatial uniformity and that the Yb concentration in the solid sample is proportional to the Yb concentration in the melt, what was confirmed by absorption measurements. Intense blue emission at 507 nm was observed, corresponding to half of the wavelength of the near infrared region (NIR) emission; besides, a decay lifetime of 0.25 ms was measured and this corresponds to half of the decay lifetime in the infrared region; these are very strong indications of the presence of blue cooperative luminescence. Larger targets have been produced to be sputtered, resulting in thin films for three dimensional (3D) display and waveguide applications. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The laser ablation method was used for depositing porous nanocrystalline indium-tin oxide thin films for gas sensing applications. Samples were prepared at different pressures using three gases (O-2, 0.8N(2):0.2O(2), N-2) and heat-treated in the same atmosphere used for the ablation process. X-ray diffraction results show that the films are not oriented and the grain sizes are in the range between 15 and 40 nm. The grains are round shaped for all samples and the porosity of the films increases with the deposition pressure. The degree of sintering after heat treatment increases for lower oxygen concentrations, generating fractures on the surface of the samples. Film thicknesses are in the range of I pm for all gases as determined from scanning electron microscopy cross-sections. Electrical resistance varies between 36.3 ohm for the film made at 10 Pa pressure in N-2 until 9.35 x 10(7) ohm for the film made at 100 Pa in O-2. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SrBi2Ta2O9 thin films, produced by the polymeric precursor method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films thus obtained are crack-free, well-adhered, and fully crystallized, even when treated at 600 degreesC for 10 min. The microstructure displayed a polycrystalline nature with an elongate grain size comparable to the films obtained by the conventional treatment. The dielectric constant values are 240, 159 and 67, for the films treated at 600 degreesC, 650 degreesC and 700 degreesC, respectively, when the films are placed directly on the SiC susceptor. Electrical measurements revealed that the increase of the temperature treatment to 700 degreesC causes a complete loss of ferroelectricity due to degradation of the bottom interface. A 4 nun-ceramic wool put between the susceptor and the substrate minimizes the interface degradation leading to a dielectric constant, a dielectric loss, and a remnant polarization (2P(r)) of 181 muC/cm(2), 0.032 muC/cm(2), and 12.8 muC/cm(2), respectively, for a film treated at 750 degreesC for 20 min. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferroelectric PbTiO3 thin films were successfully prepared on a Pt(111)Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. X-ray diffraction patterns of the films indicate that they are polycrystalline in nature. This method allows low temperature (500 degrees C) synthesis and high electrical properties. The multilayer PbTiO3 thin films were granular in structure with a grain size of approximately 110-120 nm. A 380-nm-thick film was obtained by carrying out four cycles of the spin-coating/heating process. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness (=3.4 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 570 and 0.016. The C-V characteristics of perovskite thin film prepared at low temperature show normal ferrolectric behavior. The remanent polarization and coercive field for the films deposited were 13.62 mu C/cm(2) and 121.43 kV/cm, respectively. The high electrical property values are attributed to the excellent microstrutural quality and chemical homogeneity of thin films obtained by the polymeric precursor method. (C) 2000 Elsevier B.V. S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayer thin films with perovskite structures were produced by the polymeric precursor method. SrTiO3/BaTiO3 (STO/BTO) multilayers were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by the spin-coating technique and heated in air at 700 degreesC. The microstructure and crystalline phase of the multilayered thin films were examined by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), resolution-high transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and X-ray diffraction. The SrTiO3/BaTiO3 multilayer thin films consisted of grainy structures with an approximate grain size of 60 nm. The multilayered thin films showed a very clear interface between the components. The SrTiO3/BaTiO3 multilayer thin films revealed dielectric constants of approximately 527 and loss tangents of 0.03 at 100 kHz. The dielectric constant calculated for this multilayer film system is the value of the sum of each individual component of the film, i.e. The total value of the sum of each SrTiO3 (STO) and BaTiO3 (BTO) layer. The multilayer SrTiO3/BaTiO3 obtained by the polymeric precursor method, also showed a ferroelectric behavior with a remanent polarization of 2.5 muC/cm(2) and a coercive field of 30 kV/cm. The multilayer films displayed good fatigue characteristics under bipolar stressing after application of 10(10) switching cycles. (C) 2001 Published by Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemical sensors made from nanostructured films of poly(o-ethoxyaniline) POEA and poly(sodium 4-styrene sulfonate) PSS are produced and used to detect and distinguish 4 chemicals in solution at 20 mM, including sucrose, NaCl, HCl, and caffeine. These substances are used in order to mimic the 4 basic tastes recognized by humans, namely sweet, salty, sour, and bitter, respectively. The sensors are produced by the deposition of POEA/PSS films at the top of interdigitated microelectrodes via the layer-by-layer technique, using POEA solutions containing different dopant acids. Besides the different characteristics of the POEA/PSS films investigated by UV-Vis and Raman spectroscopies, and by atomic force microscopy.. it is observed that their electrical response to the different chemicals in liquid media is very fast, in the order of seconds, systematical, reproducible, and extremely dependent on the type of acid used for film fabrication. The responses of the as-prepared sensors are reproducible and repetitive after many cycles of operation. Furthermore, the use of an "electronic tongue" composed by an array of these sensors and principal component analysis as pattern recognition tool allows one to reasonably distinguish test solutions according to their chemical composition. (c) 2007 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thin solid films of bis benzimidazo perylene (AzoPTCD) were fabricated using physical vapor deposition (PVD) technique. Thermal stability and integrity of the AzoPTCD PVD films during the fabrication (similar to 400 degrees C at 10(-6) Torr) were monitored by Raman scattering. Complementary thermogravimetric results showed that thermal degradation of AzoPTCD occurs at 675 degrees C. The growth of the PVD films was established through UV-vis absorption spectroscopy, and the surface morphology was surveyed by atomic force microscopy (AFM) as a function of the mass thickness. The AzoPTCD molecular organization in these PVD films was determined using the selection rules of infrared absorption spectroscopy (transmission and reflection-absorption modes). Despite the molecular packing, X-ray diffraction revealed that the PVD films are amorphous. Theoretical calculations (density functional theory, B3LYP) were used to assign the vibrational modes in the infrared and Raman spectra. Metallic nanostructures, able to sustain localized surface plasmons (LSP) were used to achieve surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R-N) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R-N. Water wettability decreased as the proportion of N in the gas phase increased while surface toughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the preparation of thin titanium films via sol-gel route and their subsequent chemical modification by anchoring with 2-aminothiazole ligand and Pd(II) ion sorption, aiming to maximize the photocatalytic activity. The material was characterized by diffuse reflectance infrared Fourier transform spectroscopy, ultraviolet and visible spectrometry, X-ray diffractometry, and scanning electronic microscopy. The amount of palladium adsorbed on the film's surface, determined by graphite furnace atomic absorption spectrometry, showed a value of 2.69 x 10(16) atoms CM-2. The photocatalytic tests indicated that the functionalization with 2-aminothiazole and the adsorption of palladium (II) were determinants in the semiconductor's enhanced photocatalytic activity. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Composite Langmuir-Blodgett (LB) films from polyaniline and cadmium stearate have been irradiated with ionizing X-rays for various exposure times. In the initial stages of X-ray irradiation the absorption peak at 580 nm of an as-deposited film was seen to decrease with a concomitant increase in the absorption in the long wavelength region (700-1100 nm). Upon prolonging the irradiation, the absorption maximum shifted to 800 nm with the LB film color changing to green, characteristic of acid doped polyaniline. The changes in the Fourier transform infrared (FTIR) spectra upon irradiation are also similar to those observed upon acid doping of polyaniline. When compared with acid doping, two major differences were observed for the LB films exposed to X-rays. First, the packing order of the cadmium stearate domains in the composite LB films - as observed by X-ray diffraction - is not affected by the X-ray irradiation. In addition, no significant increase in the DC conductivity was noted after the X-ray exposure whereas similar LB films have their conductivity increased by an order of magnitude upon acid doping. These differences may be explained by considering that the inter-domain contribution to the conductivity is increased by the acid doping because the insulating cadmium stearate domains are destroyed, which does not occur with the X-ray irradiation. (C) 1998 Elsevier B.V. S.A. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vibrational spectra of palladium phthalocyanine (PdPc) evaporated thin solid films are reported, including the resonance Raman scattering, surface-enhanced resonance Raman scattering (SERRS) and SERRS mapping of the film surface using micro-Raman spectroscopy with 633 nm laser radiation. SERRS of PdPc was obtained by evaporating an overlayer of Ag nanoparticles on to the PdPc film on glass. The SERRS enhancement factor is estimated as similar to10(4) with reference to PdPc evaporated films on glass. The molecular organization of the PdPc evaporated films was probed using transmission and reflection-absorption infrared spectra. It was established that a random molecular distribution found in PdPc evaporated films is independent of temperature. No evidence of thermal degradation due to thermal annealing was found in the films. Electronic absorption and emission spectra are also discussed. Copyright (C) 2002 John Wiley Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, indium tin oxide (ITO) films were prepared using a wet chemical route, the Pechini method. This consists of a polyesterification reaction between an alpha-hydroxicarboxylate complex (indium citrate and tin citrate) with a polyalcohol (ethylene glycol) followed by a post annealing at 500 degrees C. A 10 at.% of doping of Sn4+ ions into an In2O3 matrix was successfully achieved through this method. In order to characterize the structure, the morphology as well as the optical and electrical properties of the produced ITO films, they were analyzed using different experimental techniques. The obtained films are highly transparent, exhibiting transmittance of about 85% at 550 nm. They are crystalline with a preferred orientation of [222]. Microscopy discloses that the films are composed of grains of 30 nm average size and 0.63 nm RMS roughness. The films' measured resistivity, mobility and charge carrier concentration were 5.8 x 10(-3) Omega cm, 2.9 cm(2)/V s and -3.5 x 10(20)/cm(3), respectively. While the low mobility value can be related to the small grain size, the charge carrier concentration value can be explained in terms of the high oxygen concentration level resulting from the thermal treatment process performed in air. The experimental conditions are being refined to improve the electrical characteristics of the films while good optical, chemical, structural and morphological qualities already achieved are maintained. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrically conductive LaNiO3-delta (LNO) thin films with typical thickness of 200 nm were deposited on Si (111) substrates by a chemical solution deposition method and heat-treated in air at 700 degreesC. Structural, morphological, and electrical properties of the LNO thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field-emission scanning electron microscopy (FEG-SEM), and electrical resistivity rho(T). The thin films have a very flat surface and no droplet was found on their surfaces. The average grain size observed by AFM and FEG-SEM was approximately 100 nm in excellent agreement with XRD data. The rho(T) data showed that these thin films display a good metallic character in a large range of temperature. These results suggest the use of this conductive layer as electrode in the integration of microelectronic devices. (C) 2003 Elsevier B.V. All rights reserved.