153 resultados para T3 thyroid hormone
Resumo:
Estrogen involvement in breast cancer has been established; however, the association between breast cancer and thyroid diseases is controversial. Estrogen-like effects of thyroid hormone on breast cancer cell growth in culture have been reported. The objective of the present study was to determine the profile of thyroid hormones in breast cancer patients. Serum aliquots from 26 patients with breast cancer ranging in age from 30 to 85 years and age-matched normal controls (N = 22) were analyzed for free triiodothyronine (T3F), free thyroxine (T4F), thyroid-stimulating hormone (TSH), antiperoxidase antibody (TPO), and estradiol (E2). Estrogen receptor ß (ERß) was determined in tumor tissues by immunohistochemistry. Thyroid disease incidence was higher in patients than in controls (58 vs 18%, P < 0.05). Subclinical hyperthyroidism was the most frequent disorder in patients (31%); hypothyroidism (8%) and positive anti-TPO antibodies (19%) were also found. Subclinical hypothyroidism was the only dysfunction (18%) found in controls. Hyperthyroidism was associated with postmenopausal patients, as shown by significantly higher mean T3 and T4 values and lower TSH levels in this group of breast cancer patients than in controls. The majority of positive ERß tumors were clustered in the postmenopausal patients and all cases presenting subclinical hyperthyroidism in this subgroup concomitantly exhibited Erß-positive tumors. Subclinical hyperthyroidism was present in only one of 6 premenopausal patients. We show here that postmenopausal breast cancer patients have a significantly increased thyroid hormone/E2 ratio (P < 0.05), suggesting a possible tumor growth-promoting effect caused by this misbalance.
Resumo:
The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7 degrees C to 40.0 degrees C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.
Resumo:
Food intake and plasma thyroid hormone levels (T4 and T3) were higher in pigs acclimated to cold (12°) than hot (32°) environments. The exposure of cold pigs to hot ambient temperature decreased food intake and plasma T4 and T3, whereas for hot acclimated animals the change in ambient temperature (from 32 to 12° C) increased food intake and plasma thyroid hormone levels, but the new steady state level of food intake was reached only after 96 hr of temperature transfer despite the rapid change in plasma levels of thyroid hormones. Cold-acclimated pigs, when transferred to a hot environment after thyroidectomy, also reduced food intake, but hot pigs shifted to cold ambient temperature after thyroidectomy did not significantly increase food ingestion. The results of this experiment suggest that food intake adjustment depends on the previous living temperature and that thyroid hormones seem to play an important role in increasing the metabolically active mass that probably sustains the new steady state level of food intake, particularly in a cold environment.
Resumo:
Seven male broiler strains (Arbor Acres, Avian Farms, Cobb-500, Hubbard-Peterson, ISA, Naked Neck, and Ross) were compared for their growth rate, feed efficiency, and mortality due to sudden death and ascites. In addition, weekly plasma levels of thyroid hormones [3,3′,5-triiodothyronine (T3) thyroxine (T4), T3: T4 ratio, growth hormone (GH), and insulin-like growth factor-I (IGF-I)] were determined. The highly productive, commercial strains were very similar in their endocrine profiles but differed markedly from the Naked Neck chickens. Naked Neck chickens were characterized by higher plasma T3 and lower T4 levels at similar ages as well as when compared on the same body weight basis. The present findings support the hypothesis that the slightly hypothyroid state of high productive broilers renders them more sensitive to metabolic disorders. Naked Neck chickens also had higher plasma GH levels than those of their age-matched commercial broilers. The coefficient of variation for GH was highest for Naked Neck chickens, which is indicative for an amplified GH burst amplitude. It may be stated that changes in plasma thyroid hormone concentration in indirect response to selection for low feed conversion and fast growth may be causatively linked to susceptibility for metabolic disturbances such as sudden death syndrome and ascites.
Resumo:
Incubating eggs (1,800 total) produced by a commercial flock of Cobb broiler breeders were used to determine the effects of storage duration (3 and 18 d) on gas partial pressure, thyroid hormones, and hatching parameters. Partial pressure of oxygen (pO2) and carbon dioxide (pCO2) were measured on d 18 and at internal pipping (IP) during incubation. Blood samples were collected for determination of triiodothyronine (T3), thyroxine (T4), and corticosterone concentrations in the embryos at IP and in newly hatched chicks. From 464 to 510 h of incubation, eggs were checked individually every 2 h to determine the timing and duration of IP, external pipping (EP), and total hatching time. At 18 d of incubation and at IP, pCO2 was greater in air cell of eggs stored for 3 d compared to those stored for 18 d (P < 0.05), but pO2 was greater in eggs stored for 18 d. At IP, T3 and corticosterone levels were higher in plasma of the embryos of eggs stored for 3 d compared to those stored for 18 d, but it was the reverse in newly hatched chicks (P < 0.05). Embryos from eggs stored for 18 d required more time to complete IP compared to embryos of eggs stored for only 3 d (P < 0.05), whereas the duration of EP was not affected by storage. The overall longer incubation was, however, not only due to prolonged IP but also to later occurrence of IP. It was concluded that prolonged IP as a result of long storage may be related to the late increase in corticosterone level, which may be a necessary stimulus for higher T 3/T4 ratio, late increase in pCO2 level, and decrease in pO2. The effect of long storage was a delay in hatching and a continuous increase in T3 due to higher corticosterone levels between IP and hatching, which may be an indication of the more stressful event of hatching of embryos from eggs stored longer. Differences in pCO2, pO2, T3, T4, and corticosterone levels in the incubating eggs may be manifestations of these changes culminating in altered hatching parameters and consequently differences in chick quality and growth potentials.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thyroid hormones (THs) have long been known to have regulatory roles in the differentiation and maturation of vertebrate embryos, beginning with the knowledge that hormones of maternal origin are essential for human fetal central nervous and respiratory system development. Precise measurements of circulating THs led to insights into their critically important actions throughout vertebrate growth and development, initially with amphibian metamorphosis and including embryogenesis in fishes. Thyroid cues for larval fish differentiation are enhanced by glucocorticoid hormones, which promote deiodinase activity and thereby increase the generation of triiodothyronine (T-3) from the less bioactive thyroxin (T-4). Glucocorticoids also induce the expression of thyroid hormone receptors in some vertebrates. Maternally derived thyroid hormones and cortisol are deposited in fish egg yolk and accelerate larval organ system differentiation until larvae become capable of endogenous endocrine function. Increases in the T-3/T-4 ratio during larval development may reflect the regulatory importance of maternal thyroid hormones. Experimental applications of individual hormones have produced mixed results, but treatments with combinations of thyroid and corticoid hormones consistently promote larval fish development and improve survival rates. The developmental and survival benefits of maternal endocrine provisioning are increased in viviparous fishes, in which maternal/larval chemical contact is prolonged. Treatments with exogenous thyroid and corticoid hormones consistently promote development and reduce mortality rates in larval fishes, with potential hatchery-scale applications in aquaculture.
Resumo:
The relationships among avian uncoupling protein (avUCP) mRNA expression, heat production, and thyroid hormone metabolism were investigated in 7-14-day-old broiler chicks (Gallus gallus) exposed to a low temperature (cold-exposed chicks, CE) or a thermoneutral temperature (TN). After 7 days of exposure, CE chicks exhibited higher heat production (+83%, P < 0.01), avUCP mRNA expression (+20%, P < 0.01), and circulating triiodothyronine (T-3) levels (+104%, P = 0.07) for non-statistically different body weights and feed intake between 3 and 7 days of exposure as compared to TN chicks. Plasma thyroxine (T-4) concentration was clearly decreased in CE chicks (-33%, P = 0.06). The lower hepatic inner-ring deiodination activity (-47%) and the higher renal outer-ring deiodination activity (+75%) measured in CE compared to TN chicks could partly account for their higher plasma T3 concentrations. This study describes for the first time the induction of avUCP mRNA expression by low temperature in chickens, as it has been previously shown in ducklings, and supports the possible involvement of avUCP in avian thermogenesis. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Há poucos estudos analisando a importante relação entre o exercício físico, agudo e crônico, e alterações metabólicas decorrentes do hipertireoidismo. O objetivo do presente estudo foi analisar o efeito de quatro semanas de treinamento aeróbio sobre o perfil lipídico de ratos com hipertireoidismo experimental. Foram utilizados 45 ratos da linhagem Wistar, divididos aleatoriamente em quatro grupos: Controle Sedentário (CS) - administrados com salina durante o período experimental, não praticaram exercício físico (n = 12); Controle Treinado (CT) - administrados com salina, participaram do treinamento (n = 11); Hipertireoidismo Sedentário (HS) - induzidos ao hipertireoidismo, não praticaram exercício físico (n = 12); e Hipertireoidismo Treinado (HT) - induzidos ao hipertireoidismo, participaram do treinamento (n = 10). O treinamento aeróbio teve duração de quatro semanas, cinco vezes na semana, com duração de uma hora por sessão. Após o término do período experimental todos os ratos foram anestesiados em câmara de CO2 até sua sedação. Coletaram-se amostras de sangue para dosagem de colesterol total, triglicerídeos, HDL-colesterol e LDL-colesterol e hormônio T3; e amostras do coração, fígado, músculo gastrocnêmio e tecido adiposo das regiões mesentérica, retroperitonial e subcutânea para pesagem e dosagem de triglicerídeos. Para análise estatística utilizou-se ANOVA two-way, seguida do post hoc LSD de Fischer. Observaram-se menores valores de AGL no grupo HS quando comparado ao CS. O grupo HS teve nível de triglicerídeos significativamente superior nas regiões mesentérica, do gastrocnêmio e retroperitonial quando comparado com os grupos CS e CT, e apenas o tecido adiposo da região retroperitonial apresentou diferenças significativas na qual o grupo HT apresentou menor peso quando comparado com o grupo CS. Pode-se concluir que os ratos hipertireoidicos apresentaram perfil lipídico diferente dos ratos controle, e o treinamento aeróbio em ratos Wistar pode ter alterado o perfil lipídico dos animais com hipertireoidismo experimental quando comparados com o grupo sedentário e grupos controle.
Exercício e restrição alimentar aumentam o RNAm de proteínas do trânsito de Ca2+ miocárdico em ratos
Resumo:
FUNDAMENTO: Treinamento físico (TF) aumenta a sensibilidade dos hormônios tireoidianos (HT) e a expressão gênica de estruturas moleculares envolvidas no movimento intracelular de cálcio do miocárdio, enquanto a restrição alimentar (RIA) promove efeitos contrários ao TF. OBJETIVO: Avaliar os efeitos da associação TF e RIA sobre os níveis plasmáticos dos HT e a produção de mRNA dos receptores HT e estruturas moleculares do movimento de cálcio do miocárdio de ratos. MÉTODOS: Utilizaram-se ratos Wistar Kyoto divididos em: controle (C, n = 7), RIA (R50, n = 7), exercício físico (EX, n = 7) e exercício físico + RIA (EX50, n = 7). A RIA foi de 50% e o TF foi natação (1 hora/dia, cinco sessões/semana, 12 semanas consecutivas). Avaliaram-se as concentrações séricas de triiodotironina (T3), tiroxina (T4) e hormônio tireotrófico (TSH). O mRNA da bomba de cálcio do retículo sarcoplasmático (SERCA2a), fosfolamban (PLB), trocador Na+/Ca+2 (NCX), canal lento de cálcio (canal-L), rianodina (RYR), calsequestrina (CQS) e receptor de HT (TRα1 e TRβ1) do miocárdio foram avaliados por reação em cadeia da polimerase (PCR) em tempo real. RESULTADOS: RIA reduziu o T4, TSH e mRNA do TRα1 e aumentou a expressão da PLB, NCX e canal-L. TF aumentou a expressão do TRβ1, canal-L e NCX. A associação TF e RIA reduziu T4 e TSH e aumentou o mRNA do TRβ1, SERCA2a, NCX, PLB e correlação do TRβ1 com a CQS e NCX. CONCLUSÃO: Associação TF e RIA aumentou o mRNA das estruturas moleculares cálcio transiente, porém o eixo HT-receptor não parece participar da transcrição gênica dessas estruturas.
Resumo:
FUNDAMENTO: Vários autores mostraram que a deterioração da função cardíaca associa-se com o grau e a duração da obesidade. Os padrões de expressão gênica após longos períodos de obesidade precisam ser estabelecidos. OBJETIVO: Este estudo testou a hipótese de que a exposição prolongada à obesidade leva à redução nos níveis de RNAm de proteínas envolvidas na homeostase do Ca2+ miocárdico. Além disso, este estudo avaliou se uma diminuição no hormônio tireoidiano causava redução na expressão de RNAm. MÉTODOS: Ratos Wistar machos de 30 dias de idade foram distribuídos em dois grupos: controle (C) e obeso (Ob). O grupo C recebeu uma dieta padrão e o grupo Ob recebeu dietas hiperlipídicas por 15, 30 e 45 semanas. A obesidade foi definida pelo índice de adiposidade. A expressão gênica foi avaliada por PCR em tempo real quantitativa. RESULTADOS: O índice de adiposidade foi maior no grupo Ob do que no C em todas as etapas. Enquanto a obesidade nas semanas 15 e 45 determinou uma redução no RNAm de Ca2+-ATPase do retículo sarcoplasmático (SERCA2a), trocador Na+/Ca2+ (NCX) e calsequestrina (CSQ), observou-se aumento da expressão do RNAm de canal de Ca2+ do tipo L, receptor de rianodina, SERCA2a, fosfolamban (PLB), NCX e CSQ após a semana 30, em comparação ao grupo C. Não houve associação significativa entre os níveis de T3 e a expressão de RNAm. CONCLUSÕES: Nossos dados indicam que a obesidade por curtos ou longos períodos de tempo pode promover alteração na expressão gênica de proteínas reguladoras da homeostase do Ca2+ sem influência do hormônio tireoidiano
Resumo:
Thyroid hormone is known to affect myocardial glycogen stores and thereby possibly limit anaerobic performance of mammalian cardiac muscle. Thyroid hormone administration (3,5,T-triiodo-L-thyroxine, 300 mu g/kg/day, sc) for 10 days decreased left ventricle (LV) glycogen concentration relative to euthyroid animals (2.78 +/- 0.46 vs. 4.28 +/- 0.29 mg/g of LV (mean +/- SEM)) while increasing the percent of V(1) myosin isozyi-ne, contractile activity and cardiac mass. In contrast, thyroidectomy increased myocardial glycogen stores (8.50 +/- 0.56 mg/g of LV) and shifted the myosin isozyme toward V(3), prolonged contractile activity and decreased LV mass. Thyroxine administration for 3, 7 and 10 days to thyroidectomized animals progressively decreased contractile duration and increased LV mass. Thyroxine administration for 3 or 7 days to thyroidectomized rats did not reduce glycogen stores (7.75 +/- 1.02 and 9.62 +/- 1.16 mg/g of LV, respectively), whereas myocardial glycogen declined to 3.30 +/- 0.58 mg/g of LV after 10 days of treatment. During hypoxia, cardiac muscle from thyroidectomized rats maintained greater active force and developed less contracture relative to euthyroid and, to a greater extent, than hyperthyroid rats. Removal of glucose from the bath decreased anaerobic performance and impaired recovery; however, myocardium from thyroidectomized rats remained more tolerant to hypoxia than the euthyroid group. Overall, the intrinsic LV glycogen content was positively correlated to anaerobic performance. These data demonstrate that the thyroid state profoundly affects myocardial growth, contractility and anaerobic performance of rat myocardium. Although energy demand may affect function during hypoxia, anaerobic substrate reserve (cardiac glycogen concentration) appears to be the primary factor determining tolerance to hypoxic stress. J. Exp. Zool. 311A:399-407, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Short and long-term thyroidectomy and Methimazole treatment reduced food intake in young growing pigs. The thermic effect of feeding assessed by the increment in rectal temperature after the beginning of food ingestion was reduced in thyroidectomized animals, but no effect could be observed in Methimazole-treated pigs. Propranolol injection after short-term treatment decreased food intake in sham-operated and treated animals, but reduced the thermic effect of feeding only in the thyroidectomized and Methimazole-treated pigs. Long-term treatment inhibited the effect of propranolol in reducing food intake and the thermic effect of feeding. On the basis of these data, it was suggested that the interaction between thyroid hormones and catecholamines (noradrenaline) plays an important role in the regulation of food intake and in the thermic effect of feeding in thyroid-deficient pigs.
Resumo:
Transthyretin and retinal-binding protein are sensitive markers of acute protein-calorie malnutrition both for early diagnosis and dietary evaluation. A preliminary study showed that retinal-binding protein is the most sensitive marker of protein-calorie malnutrition in cirrhotic patients, even those with the mild form of the disease (Child A). However, in addition to being affected by protein-calorie malnutrition, the levels of these short half-life-liver-produced proteins are also influenced by other factors of a nutritional (zinc, tryptophan, vitamin A, etc) and non-nutritional (sex, aging, hormones, renal and liver functions and inflammatory activity) nature. These interactions were investigated in 11 adult male patients (49.9 ± 9.2 years of age) with alcoholic cirrhosis (Child-Pugh grade A) and with normal renal function. Both transthyretin and retinol binding protein were reduced below normal levels in 55% of the patients, in close agreement with their plasma levels of retinal. In 67% of the patients (4/6), the reduced levels of transthyretin and retinal-binding protein were caused by altered liver function and in 50% (3/6) they were caused by protein-calorie malnutrition. Thus, the present data, taken as a whole, indicate that reduced transthyretin and retinal-binding protein levels in mild cirrhosis of the liver are mainly due to liver failure and/or vitamin A status rather than representing an isolated protein-calorie malnutrition indicator.