226 resultados para System for Drug Delivery
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Importance of the field: The use of topical agents poses unique and challenging hurdles for drug delivery. Topical steroids effectively control ocular inflammation, but are associated with the well-recognized dilemma of patient compliance. Although administration of topical antimicrobials as prophylaxis is acceptable among ophthalmologists, this common practice has no sound evidence base Developing a new antimicrobial agent or delivery strategy with enhanced penetration by considering the anatomical and physiological constraints exerted by the barriers of the eye is not a commonly perceived strategy. Exploiting the permeability of the sclera, subconjunctival routes may offer a promising alternative for enhanced drug delivery and tissue targeting.Area covered in this review: Ocular drug delivery strategies were reviewed for ocular inflammation and infections clinically adopted for newer class of antimicrobials, which use a multipronged approach to limit risks of endophthalmitis.What the reader will gain: The analysis substantiates a new transscleral drug delivery therapeutic approach for cataract surgery.Take home message: A new anti-inflammatory and anti-infective paradigm that frees the patient from the nuisance of topical therapeutics is introduced, opening a large investigative avenue for future improved therapies.
Resumo:
This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.
Resumo:
We compared the pharmacokinetics of intraosseous (IO) drug delivery via tibia or sternum, with central venous (CV) drug delivery during cardiopulmonary resuscitation (CPR).Methods: CPR of anesthetized KCl arrest swine was initiated 8 min post arrest. Evans blue and indocyanine green, each were simultaneously injected as a bolus with adrenaline through IO sternal and tibial needles, respectively, n = 7. In second group (n = 6) simultaneous IO sternal and IV central venous (CV) injections were made.Results: Peak arterial blood concentrations were achieved faster for sternal IO vs. tibial IO administration (53 +/- 11 s vs. 107 +/- 27 s, p = 0.03). Tibial IO dose delivered was 65% of sternal administration (p = 0.003). Time to peak blood concentration was similar for sternal IO and CV administration (97 +/- 17 s vs. 70 +/- 12 s, respectively; p = 0.17) with total dose delivered of sternal being 86% of the dose delivered via CV (p = 0.22).Conclusions: IO drug administrations via either the sternum or tibia were effective during CPR in anesthetized swine. However, IO drug administration via the sternum was significantly faster and delivered a larger dose. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conventionally, pharmaceutical substances are administered orally because the gastrointestinal tract possesses the appropriate features for drug absorption. Nevertheless, the gastrointestinal tract physiology is complex and influenced by many factors. These factors must be completely understood for the optimization of oral drug delivery systems. Although in vitro tests provide information about release and drug absorption profiles, in vivo studies are essential, due to the biological variability. Several techniques have been employed in an attempt to conveniently characterize the behavior of solid dosage forms in vivo. The noninvasive biomagnetic technique of alternate current biosusceptometry (ACB) has been used in studies focusing on gastrointestinal motility and, more recently, to evaluate the performance of magnetic dosage forms. This article will discuss the main characteristics of AC biosusceptometry and its applicability for determination of the relationship between the human gastrointestinal tract and orally administered pharmaceutical dosage forms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Free films were obtained by the solvent casting method from retrograded starch-pectin dispersions at different polymer proportions and concentrations with and without plasticizer. Film forming dispersions were characterized according to their hardness, birefringence and rheological properties. The polymer dispersions showed a predominantly viscous behavior (G″ > G′) and the absence of plasticizers lead to building of stronger structures, while the occurrence of Maltese crosses in the retrograded dispersions indicates the occurrence of a crystalline organization. Analyses of the films included mechanical properties, thickness, superficial and cross sectional morphology, water vapor permeability, liquid uptake ability, X-ray diffractometry, in vitro dissolution and enzymatic digestion. The high resistant starch content (65.8-96.8%) assured the resistance of materials against enzymatic digestion by pancreatin. Changes in the X-ray diffraction patterns indicated a more organized and crystalline structure of free films in relation to isolated polymers. Increasing of pectin proportion and pH values favored the dissolution and liquid uptake of films. Films prepared with lower polymer concentration presented better barrier function (WVP and mechanical properties). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Herbal medicines have been widely used around the world since ancient times. The advancement of phytochemical and phytopharmacological sciences has enabled elucidation of the composition and biological activities of several medicinal plant products. The effectiveness of many species of medicinal plants depends on the supply of active compounds. Most of the biologically active constituents of extracts, such as flavonoids, tannins, and terpenoids, are highly soluble in water, but have low absorption, because they are unable to cross the lipid membranes of the cells, have excessively high molecular size, or are poorly absorbed, resulting in loss of bioavailability and efficacy. Some extracts are not used clinically because of these obstacles. It has been widely proposed to combine herbal medicine with nanotechnology, because nano-structured systems might be able to potentiate the action of plant extracts, reducing the required dose and side effects, and improving activity. Nanosystems can deliver the active constituent at a sufficient concentration during the entire treatment period, directing it to the desired site of action. Conventional treatments do not meet these requirements. The purpose of this study is to review nanotechnology- based drug delivery systems and herbal medicines.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)