26 resultados para Surface liming
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Brazil has extensive area with acid soils. Using phosphogypsum and soil acidity tolerant cultivars are alternatives to crop establishment in no-till system without previous limestone incorporation in many agricultural soils of Brazil. However, it remains unknown how phosphogypsum and limestone surface application affects rice (Oryza sativa L.) and common bean (Phaseolus vulgaris L.) nutrition and yield under a no-till system. A field experiment was conducted in a sandy clay loam, kaolinitic, thermic Typic Haplorthox, previously cultivated under conventional tillage, in Botucatu, Sao, Paulo State, Brazil. Treatments included four dolomitic limestone rates (0, 1100, 2700, and 4300 kg ha(-1)), two phosphogypsum rates (0 and 2100 kg ha(-1)), and two upland rice cultivars (Caiapo and IAC 202). in 2002-2003, and two bean cultivars (Perola and Carioca), in 2003-2004. Both amendments were applied on the surface, without soil incorporation. The content of Ca, Mg, and Mn in flag leaves and rice yield increased with limestone surface application. Liming increased the shoot dry matter of IAC 202 rice. Phosphogypsum increased S contents in leaves of both rice cultivars, and resulted in higher grain yield in the Caiapo rice. Liming increased K contents in leaves of both bean cultivars. In the absence of phosphogypsum, liming increased S contents and grain yield of bean. Content of Mg in leaves was reduced by phosphogypsum in lower limestone rates. In phosphogypsum presence, liming reduced Zn contents in leaves and increased bean shoot dry matter. Phosphogypsum increased Ca and S, and reduced Mg contents in bean leaves. Using soil acidity tolerant cultivars promoted higher crop yields in no-till systems establishment, even when the effective soil amelioration had not yet been achieved.
Resumo:
Soil and subsoil aluminium toxicity has been one of the main limiting factors for soybean and wheat yields in tropical soils. Usually liming is the most effective way to deal with soil acidity and Al toxicity, but in no-till systems the soil is not disturbed making it impossible to incorporate lime in the arable layer, and lime has been usually applied on the soil surface. In this paper soybean and wheat responses to lime applied on the soil surface and/or incorporated in the soil arable layer were evaluated during the transition from conventional tillage to a no-till system. The experiment was conducted for 3 years in Parana, Brazil, using a wheat-soybean rotation. Lime rates ranging from 0.0 to 9.0 t ha(-1) were incorporated down to 20 cm and 4.5 t ha(-1) were spread or not on the soil surface. Soil samples were taken down to 60 cm, 39 months after the first lime application. Soil chemical characteristics were affected by lime application down to 60 cm deep in the profile. Soybean responded to lime irrespective of application method, but the highest accumulated yield was obtained when lime was incorporated into the arable layer. For wheat, the more sensitive the cultivar, the greater was the response to lime. During the introduction of a no-till system, lime must be incorporated into the arable layer when the wheat cultivar is Al-sensitive. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Soil columns were produced by filling PVC tubes with a Dark Red Latosol (Acrortox, 22% of clay). A compacted layer was established at the depth of 15 cm in the columns. In the compacted layer, soil was packed to 1.13, 1.32, 1.48, and 1.82 Mg kg(-1), resulting in cone resistances of 0.18, 0.43, 1.20, and 2.50 MPa. Cotton was cropped for 30 days. Lime was applied to raise base saturation to 40, 52, and 67%. The highest base saturation caused a decrease in phosphorus (P) and zinc (Zn) concentrations in the plants. A decrease in root dry matter, length and surface area was also observed. This could be a consequence of lime induced Zn deficiency. Root growth was decreased in the compacted layer, and complete inhibition was noticed at 2.50 MPa. Once the roots got through the compacted layer, there was a growth recovery in the bottom layer of the pots. The increase in base saturation up 52% was effective in preventing a decrease in cotton root length at soil resistances to 1.20 MPa. Where the roots were shorter, there was an increase in nutrient uptake per unit of root surface area, which kept the plants well nourished, except for P.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The tropical soil acidity is one of the main limiting factors for crop productivity. This study aimed to evaluate the effects of application of limestone dose to soil fertility, nutritional status of the crop, and productivity and quality of the fruits of mango, cultivar Keitt. The study was carried out at Selviria, state of Mato Grosso Sul, Brazil, in a Typic Haplustox (pH in CaCl2=4.7), cultivated with mango cultivar Keitt grafted on Coquinho pattern in the production phase (13years old). Treatments were composed of limestone doses (0, 1.55, 3.10, 4.65, and 6.20tha(-1)), arranged in blocks at random with three repetitions. The limestone was applied and incorporated in the surface layer of 0 to 5cm deep in the total area. We evaluated the chemical attributes of the soil [pH, hydrogen (H+) aluminum (Al), calcium (Ca), magnesium (Mg), potassium (K), and sum of bases and base saturation] at 16 and 28months after liming (layer 0 to 20cm deep), the nutrition of plants at 12months after liming, and quality of the fruit in two crop years. Liming promoted improvements in soil chemical attributes, reflected in the nutritional status, productivity, and quality of mango fruit. Also, there was a linear effect with the application of lime dose on the productivity of the fruit, but after the second year of evaluation.