130 resultados para Stellar atmospheres


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mira are pulsating variable stars in advanced stages of evolution. Their atmospheres are sources of intense absorption bands attributed to molecular titanium monoxide (TiO). It has been suggested that the abundance of TiO reaches its maximum value near the minimum light. In this sense, the study of the processes of formation and destruction of TiO in circumstellar envelopes of Mira stars, not only allows us to understand the physical and chemical processes that occur in these environments, as it allows to verify the correlation between the abundance of TiO and its light curve. However, the main mechanisms of formation and destruction of TiO are poorly known and, consequently, the possible correlation between the abundance of this species and the light curve. In these sense, we studied the main processes of formation and destruction of titanium monoxide in molecular layers of Mira atmospheres and determined its temporal variation as function of the stellar radius. The TiO profile along the radius was expected for the different stellar phase, however its abundance is not enough to explain the light curve. The reasons behind it are discussed in details

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporally-growing frontal meandering and occasional eddy-shedding is observed in the Brazil Current (BC) as it flows adjacent to the Brazilian Coast. No study of the dynamics of this phenomenon has been conducted to date in the region between 22 degrees S and 25 degrees S. Within this latitude range, the flow over the intermediate continental slope is marked by a current inversion at a depth that is associated with the Intermediate Western Boundary Current (IWBC). A time series analysis of 10-current-meter mooring data was used to describe a mean vertical profile for the BC-IWBC jet and a typical meander vertical structure. The latter was obtained by an empirical orthogonal function (EOF) analysis that showed a single mode explaining 82% of the total variance. This mode structure decayed sharply with depth, revealing that the meandering is much more vigorous within the BC domain than it is in the IWBC region. As the spectral analysis of the mode amplitude time series revealed no significant periods, we searched for dominant wavelengths. This search was done via a spatial EOF analysis on 51 thermal front patterns derived from digitized AVHRR images. Four modes were statistically significant at the 95% confidence level. Modes 3 and 4, which together explained 18% of the total variance, are associated with 266 and 338-km vorticity waves, respectively. With this new information derived from the data, the [Johns, W.E., 1988. One-dimensional baroclinically unstable waves on the Gulf Stream potential vorticity gradient near Cape Hatteras. Dyn. Atmos. Oceans 11, 323-350] one-dimensional quasi-geostrophic model was applied to the interpolated mean BC-IWBC jet. The results indicated that the BC system is indeed baroclinically unstable and that the wavelengths depicted in the thermal front analysis are associated with the most unstable waves produced by the model. Growth rates were about 0.06 (0.05) days(-1) for the 266-km (338-km) wave. Moreover, phase speeds for these waves were low compared to the surface BC velocity and may account for remarks in the literature about growing standing or stationary meanders off southeast Brazil. The theoretical vertical structure modes associated with these waves resembled very closely to the one obtained for the current-meter mooring EOF analysis. We interpret this agreement as a confirmation that baroclinic instability is an important mechanism in meander growth in the BC system. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of hybrid ruteno-cuprates - such as Ru-1212 and Ru-1222 - was discovered in 1995 by Bauerfeind and collaborators. These materials present superconducting and magnetic states at low temperatures, an atypical duality in other superconductors. The superconductivity is more easily observed in Ru-1222, while Ru-1212 is a more problematic case, due to the strong effects of the preparation details in its superconducting properties, becoming the material superconductor or not. Ru-1212 presents a critical temperature that can vary between 0 and 46 K, depending on the preparation conditions, and a temperature of magnetic transition of around 132 K. The samples were prepared through solid state reactions, by using a mixture of high purity powders, followed by calcination and sinterization in the nitrogen and oxygen atmospheres. This paper shows the preparation process of Ru-1212 samples, followed by their structural and magnetic characterization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of chemical methods in the synthesis of high-quality and small-size polycrystalline samples has been increased in recent years. In this work, a chemical route based on an aqueous precursor solution of metals followed by the addition of a water-soluble polymer formed by ethylenediaminetetraacetic acid (EDTA) and ethylene glycol (EG) was tested to produce superconducting mesoscopic YBa(2)Cu(3)O(7-gamma) samples. Different conditions of heat treatments and the effects of argon and oxygen atmospheres during the calcination steps were traced using X-ray diffraction (XRD), scanning electron microscopy (SEM) and magnetic measurements. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmas generated in de discharges in aromatic compounds have been used for several years in polymerization processes. The chemical kinetics developed in such a plasma environment are extremely complicated. Therefore it is extremely important to set up optical and electrical diagnostics in order to establish the kinetics of the film growth, In this work we studied de plasmas generated ill low-pressure atmospheres of benzene for different values of gas pressure and power coupled to the discharge. The pressure range varied from 0.2 to 1.0 mbar for electric power running from 4 to 25 W, the main chemical species observed within the discharge were CH, H and C. It was observed that the CH relative concentration increases continuously with the power in the range investigated. The electron temperature varied from 0.5 to 2.0 eV with the increase of the power, for a fixed value of gas pressure. The relative dielectric constant of the plasma polymerized benzene was kept around 4.8 from 100 Hz to 10 kHz, presenting a resonance near 25 kHz. This electric behaviour of the film was the same fur different conditions of polymeric film deposition, (C) 1997 Elsevier B.V. S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports studies on dielectric and ferroelectric properties of lead zirconate titanate (PZT) thin films crystallized by conventional thermal annealing (CTA) and rapid thermal annealing (RTA) in air, oxygen and nitrogen atmospheres to better understand, control and optimize these properties. The dielectric constant (epsilon) and dissipation factor (tan delta) values, at a frequency of 100 kHz; for film crystallized in air by CTA process, were 358 and 0.039, respectively. Considering the same frequency for film crystallized in air by RTA, these values were 611 and 0.026, respectively. The different dielectric values were justified by a space-charge or interfacial polarization in films, often characterized as Maxwell-Wagner type. This effect was also responsible to dispersion at frequencies above 1 MHz in film crystallized in air by CTA process and film crystallized by RTA in oxygen atmosphere. The film crystallized by RTA under nitrogen atmosphere presented an evident dispersion at frequencies around 100 Hz, characterized by an increase in both epsilon and tan delta. This dispersion was attributed to conductivity effects. The remanent polarization (P-r) and coercive field (E-c) were also obtained for all films. Films obtained from RTA in air presented higher P-r (17.8 muC cm(-2)) than film crystallized from CTA (7.8 muC cm(-2)). As a function of the crystallization atmospheres, films crystallized by RTA in air and nitrogen presented essentially the same P-r values (around 18 muC cm(-2)) but the P-r (3.9 muC cm(-2)) obtained from film crystallized under oxygen atmosphere was profoundly influenced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray irradiation is shown to affect electronic properties of polyaniline (PANi) in composite Langmuir-Blodgett (LB) films of PANi and cadmium stearate, in a similar way to acid doping. The time it takes for the shift in the UV-vis spectra, characteristic of PANi doping, increases linearly with the film thickness, thus indicating a surface-controlled process. The humidity of the environment under which the films are irradiated is also of extreme importance. No shin is observed under vacuum or under dry atmospheres of N-2, O-2 and Ar. For humid environments the time for the shift decreases with increasing relative humidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reports a study of the thermal stability and morphological changes in tin oxide nanobelts grown in the orthorhombic SnO phase. The nanobelts were heat-treated in a differential scanning calorimetry (DSC) furnace at 800 degrees C for I It in argon, oxygen, or synthetic air atmospheres. The samples were then characterized by DSC, X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and high resolution field emission scanning electron microscopy (FE-SEM). The results confirmed that the orthorhombic SnO phase is thermodynamically unstable, causing the belts to transform into the SnO2 phase when heat-treated. During the phase transition, if oxygen is available in the furnace atmosphere, nanofibers grow at the edge of nanobelts at about 50 degrees of the belts' growth direction, while particles grow on the belt surface in the absence of oxygen. Although the decomposition process reduces the nanobelt cell volume by 22%, most belts remain monocrystalline after the heat treatment. The results confirm that phase transition is a decomposition process, which explains the morphological changes in the belts based on metallic tin generated in the process.