19 resultados para Starting materials


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on the preparation, structural and luminescent studies of nanosized up-converter phosphors Y2O2S:Yb(4%), Er(0.1%) and Y2O2S:Yb(4%), Tm(0.1%),both from polymeric and basic carbonate precursors. The precursors were submitted to a sulphuration process that was previously developed for oxysulfide preparation from basic carbonate. From XRD data, all phosphors presented the oxysulfide phase and the mean crystallite size estimated from the Scherrer formula in the range of 15-20 nm. Polymeric precursor leads to the smallest crystallite size independent on the doping ion. SEM and TEM results confirmed that basic carbonate leads to spherical particles with narrow size distribution and mean diameter of 150 nm, and polymeric precursor smaller spherical particles with diameter between 20 and 40 nm. Up-conversion studies under 980 nm laser excitation showed that Er-doped phosphors present strong green emission related to H-2(11/2), S-4(3/2) --> I-4(15/2) Er transitions as well as the red ones, F-4(9/2) --> I-4(15/2). Tm-doped samples show strong blue emission assigned to (1)G(4) --> H-3(6) and also the red ones, related to (1)G(4) --> F-3(4). Therefore, the sulphuration method was successfully applied to prepare nanosized and nanostructured blue and green up-converter oxysulfide phosphors starting from basic carbonate and polymeric precursors. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS) and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP) and polyethylene-terphthalate (PET), and a biodegradable polymer, polylactic acid (PLA).