33 resultados para Sparse matrices
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes alpha, beta and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a nontransposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. ©2006 IEEE.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes α and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. © 2006 IEEE.
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi-phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which does not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show the modal transformation matrix of a hypothetical two-phase obtained with numerical and analytical procedures. It will be shown currents and voltage s at terminals of the line taking into account the use of modal transformation matrices obtained by using numerical and analytical procedures. © 2011 IEEE.
Resumo:
Most of the established procedures for analysis of aeroelastic flutter in the development of aircraft are based on frequency domain methods. Proposing new methodologies in this field is always a challenge, because the new methods need to be validated by many experimental procedures. With the interest for new flight control systems and nonlinear behavior of aeroelastic structures, other strategies may be necessary to complete the analysis of such systems. If the aeroelastic model can be written in time domain, using state-space formulation, for instance, then many of the tools used in stability analysis of dynamic systems may be used to help providing an insight into the aeroelastic phenomenon. In this respect, this paper presents a discussion on the use of Gramian matrices to determine conditions of aeroelastic flutter. The main goal of this work is to introduce how observability gramian matrix can be used to identify the system instability. To explain the approach, the theory is outlined and simulations are carried out on two benchmark problems. Results are compared with classical methods to validate the approach and a reduction of computational time is obtained for the second example. © 2013 Douglas Domingues Bueno et al.
Resumo:
Piezoelectric array transducers applications are becoming usual in the ultrasonic non-destructive testing area. However, the number of elements can increase the system complexity, due to the necessity of multichannel circuitry and to the large amount of data to be processed. Synthetic aperture techniques, where one or few transmission and reception channels are necessary, and the data are post-processed, can be used to reduce the system complexity. Another possibility is to use sparse arrays instead of a full-populated array. In sparse arrays, there is a smaller number of elements and the interelement spacing is larger than half wavelength. In this work, results of ultrasonic inspection of an aluminum plate with artificial defects using guided acoustic waves and sparse arrays are presented. Synthetic aperture techniques are used to obtain a set of images that are then processed with an image compounding technique, which was previously evaluated only with full-populated arrays, in order to increase the resolution and contrast of the images. The results with sparse arrays are equivalent to the ones obtained with full-populated arrays in terms of resolution. Although there is an 8 dB contrast reduction when using sparse arrays, defect detection is preserved and there is the advantage of a reduction in the number of transducer elements and data volume. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
The chloropropyl silica gel was modified with octa(3-aminopropyl) octasilsesquioxane and characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), spectroscopies, and surface and area porosity. The specific sorption capacity of metallic ions (Cu2+ and Ni2+) increases in the following solvent order: water < ethanol 42% < ethanol < ketone. The high values of the constant (K) in the order of 103 L mol-1 suggested the high adsorbent capacity of the modified silica (SGAPC) for Cu2+ and Ni2+. SGAPC was applied to a separation column and shows recoveries of around 100% of copper in samples of sugar cane spirit, vodka, ginger brandy, and ethanol fuel. © 2013 Devaney Ribeiro Do Carmo et al.
Resumo:
Given a strongly regular Hankel matrix, and its associated sequence of moments which defines a quasi-definite moment linear functional, we study the perturbation of a fixed moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear functional whose action results in such a perturbation and establish necessary and sufficient conditions in order to preserve the quasi-definite character. A relation between the corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros. We also study the invariance of the Laguerre-Hahn class of linear functionals under such perturbation, and determine its relation with the so-called canonical linear spectral transformations. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than ∼1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives in water-saturated matrices. © 2013 Acta Materialia Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sparse arrays have pitch larger than half-wavelength (lambda/2) and there is a reduced number of elements in comparison with a full-populated array. Consequently, there is a reduction in cost, data acquisition and processing. However, conventional beamforming techniques result in large side and grating lobes, and consequently in image artifacts. In this work the instantaneous phase of the signals is used in a beamforming technique instead of the instantaneous amplitudes to improve images obtained from sparse arrays configurations. A threshold based on a statistical analysis and the number of signals used for imaging is applied to each pixel, in order to determine if that pixel is related to a defect or not. Three sets of data are used to evaluate the technique, considering medical and non-destructive testing: a simulated point spread function, a medical phantom and an aluminum plate with 2 lambda-, 7 lambda- and lambda-pitch, respectively. The conventional amplitude image is superposed by the image improved by the instantaneous phase, increasing the reflectors detectability and reducing artifacts for all cases, as well as dead zone for the tested plate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We demonstrate that for every two-qubit state there is a X-counterpart, i.e., a corresponding two-qubit X-state of same spectrum and entanglement, as measured by concurrence, negativity or relative entropy of entanglement. By parametrizing the set of two-qubit X-states and a family of unitary transformations that preserve the sparse structure of a two-qubit X-state density matrix, we obtain the parametric form of a unitary transformation that converts arbitrary two-qubit states into their X-counterparts. Moreover, we provide a semi-analytic prescription on how to set the parameters of this unitary transformation in order to preserve concurrence or negativity. We also explicitly construct a set of X-state density matrices, parametrized by their purity and concurrence, whose elements are in one-to-one correspondence with the points of the concurrence versus purity (CP) diagram for generic two-qubit states. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Turmeric (Curcuma longa L.), which has been used for long time as a spice, food preservative and coloring agent, is a rich source of beneficial phenolic compounds identified as curcuminoids. These phenolic compounds are known for their antioxidant, anti-inflammatory and antimutagenic properties, among others. On the other hand, they are very susceptible to oxidation, requiring protection against oxygen, light and heat. This protection can be achieved by microencapsulation. In this work, the characteristics and the stability of turmeric oleoresin encapsulated by freeze-drying using mixtures of maltodextrin and gelatin as wall materials were studied. Encapsulated turmeric oleoresin was stored at –20, 25 and 60 °C, in the absence of light, and analyzed over a period of 35 days for curcumin and total phenolic contents and color. Results showed that the samples produced with 26% maltodextrin/0.6% gelatin and 22% maltodextrin/3% gelatin presented good encapsulation efficiencies and solubility. In general, the method of encapsulation employed originated products with satisfactory thermal stability, although the encapsulated materials with a higher proportion of maltodextrin in relation to gelatin had better stabilities, especially at –20 and 25 °C temperatures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)