263 resultados para Soil water. eng


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A few traditional methods for determining water content in the field are either inaccurate or time consuming. As an alternative, the time domain reflectometry (TDR) technology has been used in the determination of the soil water content for geotechnical applications. This paper presents the preliminary results on the development of a new TDR probe for determining soil water content and dry density at different depths. This new probe is intended to be pushed into the ground using piezocone equipment. Different from the standard TDR probes with straight rods, the new probe consists of two parallel copper stripes coiled around a PVC-steel core. The probe diameter is the same as the standard 10 cm2 piezocone diameter. Through laboratory calibrations, it is possible to establish expressions relating the soil apparent dielectric constant and the bulk electrical conductivity with the gravimetric water content and the dry density. Copyright ASCE 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3×2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The largest losses in mechanical harvesting of peanuts occur during the stage of digging, and its assessment is still incipient in Brazil. Therefore, the aim of this study was to evaluate the quantitative losses and the performance of the tractor-digger-inverter, according to soil water content and plant populations. The experiment was conducted in a completely randomized block design with a factorial scheme 2 x 3, in which the treatments consisted of two soil, water content (19.3 and 24.8%) and three populations of plants (86,111, 127,603 and 141,144 plants ha-1), with four replications. The quantitative digging losses and the set mechanized performance were evaluated. The largest amount of visible and total losses was found in the population of 141.144 plants ha-1 for the 19.3% soil water content. The harvested material flow and the tractor-digger-inverter performance were not influenced by soil water content and plant population. The water content in the pods was higher in 24.8% soil water content only for the population of 86,111 plants ha-1; the yield was higher in the populations of 141.144 and 127.603 plants ha-1, in the 19.3 e 24.8% soil water content, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Savannas are characterized by sparsely distributed woody species within a continuous herbaceous cover, composed mainly by grasses and small eudicot herbs. This vegetation structure is variable across the landscape, with shifts from open grassland to savanna woodland determined by factors that control tree density. These shifts often appear coupled with environmental variations, such as topographic gradients. Here we investigated whether herbaceous and woody savanna species differ in their use of soil water along a topographic gradient of about 110 m, spanning several vegetation physiognomies generally associated with Neotropical savannas. We measured the delta H-2 and delta O-18 signatures of plants, soils, groundwater and rainfall, determining the depth of plant water uptake and examining variations in water uptake patterns along the gradient. We found that woody species use water from deeper soil layers compared to herbaceous species, regardless of their position in the topographic gradient. However, the presence of a shallow water table restricted plant water uptake to the superficial soil layers at lower portions of the gradient. We confirmed that woody and herbaceous species are plastic with respect to their water use strategy, which determines niche partitioning across topographic gradients. Abiotic factors such as groundwater level, affect water uptake patterns independently of plant growth form, reinforcing vegetation gradients by exerting divergent selective pressures across topographic gradients. (C) 2013 SAAB. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, the use of herbicides is essential in a practical and common in agricultural areas, but efficiency of these herbicides can be compromised when applied on plants that thrive in water deficit conditions, due to low uptake and translocation of the product. Therefore, the aim of this study was to compare the efficiency of control ACCase inhibiting herbicides applied post-emergence in plants of Eleusine indica under different soil water contents. The experiment was conducted in a greenhouse and the experimental design was completely randomized design with four replications, consisting of a 9x4 factorial, with the combination of three soil water potentials (-0.03, -0.07 and -1.5 MPa) three herbicides (fluazifop-p -butyl, haloxyfop-methyl and sethoxydim + oil) and four doses (0, 25, 50, and 100 % of the recommended dose). Herbicide application was made in plants in vegetative stage 2-3 tillers. The soil water potential was initiated in the development stage of two leaves, and the water was supplemented until the soil reaches the potential of -0.01 MPa, when it came to minimum pre-determined for each water management. The physiological parameters evaluated were: photosynthetic rate, stomatal conductance, transpiration leaf temperature and plant dry mass. The visual assessments of phytotoxicity were performed at 7 and 14 days after application. The herbicides behaved in different ways according to the used water management. In severe water stress conditions (soil moisture at 8%) only fluazifop-p-butyl herbicide achieved satisfactory control (> 90%) in E. indica plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate the bean yield under different water table levels as well as the moisture and nitrate distribution in the soil profile, a field experiment was carried out at the experimental area from the College of Agronomic Sciences - UNESP, Botucatu, SP, Brazil. Beans were grown in field lysimeters and subjected to five water table depths:30; 40; 50; 60 and 70 cm. The moisture in the soil profile was gravimetrically determined through samples obtained at 10; 20; 30; 40; 50; 60 and 70cm of depth. The water table depths of 30cm and 40cm showed the highest productivities (3,228.4 kg.ha-1 and 3,422.1 kg.ha-1, respectively), showing no statistical differences between each other. The highest productivity was related to the two most elevated water table levels (30 and 40cm), which provided the highest moisture average values on basis of volume in the soil profile (33.3 e 31%) as well as the consumptive use of water (416 and 396 mm). The nitrate content during the bean cycle at the extraction depth of 60cm has been under the safe drinking limit of 10 mg.1-1 for water table depths of 30; 40; 50 and 60cm, showing the denitrification effectiveness as a way of controlling water table from nitrate pollution. The water table handling allowed the attainment of high bean productivity levels, as well as the reduction of the nitrate level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate the bean yield under different water table levels as well as the moisture and nitrate distribution in the soil profile, a field experiment was carried out in the experimental area of the College of Agricultural Sciences - UNESP, Botucatu, SP, Brazil. Beans were grown in field lysimeters under five water table depths: 30; 40; 50; 60 and 70 cm. The moisture in the soil profile was determined gravimetrically using samples collected at 10; 20; 30; 40; 50; 60 and 70 cm deep. The water table depths of 30cm and 40cm showed the highest productivities (3,228.4kg.ha-1 and 3,422.1kg.ha-1, respectively), with no statistical differences between them. The highest productivity was related to the two highest water table levels (30 and 40cm), which provided the highest moisture average values on the basis of volume in the soil profile (33.3 e 31%) as well as the consumptive use of water (416 and 396mm). The nitrate content during the bean cycle at the extraction depth of 60cm was below the safe drinking limit of 10mg.1-1 for water table depths of 30; 40; 50 and 60cm, which shows the denitrification efficiency as a way of controlling nitrate pollution in water tables. The management of water table can lead to high levels of bean yield and to a better control of nitrate pollution in underground water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to study the relation between humidity, density, porosity and shrinkage of the floodplain soil and riparian vegetation and their ability to store water. For this purpose, two locations for every type of soils were evaluated. Both were placed at the Agronomy University (Faculdade de Ciências Agronômicas) in São Manuel, State of São Paulo, Brazil. The floodplain soil was vegetated with Southern Cattail (Typha domingensis). In both places, soil samples were collected from several depths: 0, 30, 60 and 100 cm. Results show that lower soil density values (0.15 g/cm3) with organic texture and high porosities values (up to 86.2%) were found in samples with the highest organic material content in the floodplain soil. For this field experiment, flood plains soils (characterised as basin gley soils) presented high volumetric instability with a retratibility of 67.49% and higher water storage capacities compared to riparian stands soils (characterised as fluvic neosoils).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A caracterização da variabilidade espacial dos atributos do solo é indispensável para subsidiar práticas agrícolas de maneira sustentável. A utilização da geoestatística para caracterizar a variabilidade espacial desses atributos, como a resistência mecânica do solo à penetração (RP) e a umidade gravimétrica do solo (UG), é, hoje, prática usual na agricultura de precisão. O resultado da análise geoestatística é dependente da densidade amostral e de outros fatores, como o método de georreferencimento utilizado. Desta forma, o presente trabalho teve como objetivo comparar dois métodos de georreferenciamento para a caracterização da variabilidade espacial da RP e da UG, bem como a correlação espacial dessas variáveis. Foi implantada uma malha amostral de 60 pontos, espaçados em 20 m. Para as medições da RP, utilizou-se de penetrógrafo eletrônico e, para a determinação da UG, utilizou-se de trado holandês (profundidade de 0,0-0,1 m). As amostras foram georreferenciadas, utilizando-se do método de Posicionamento por Ponto Simples (PPS), com de (retirar) receptor GPS de navegação, e Posicionamento Relativo Semicinemático, com receptor GPS geodésico L1. Os resultados indicaram que o georreferenciamento realizado pelo PPS não interferiu na caracterização da variabilidade espacial da RP e da UG, assim como na estrutura espacial da relação dos atributos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantificação da evaporação do solo é requerida em estudos de balanço hídrico de culturas e em aplicações que visam a aumentar a eficiência do uso da água pelos cultivos. O objetivo deste trabalho foi testar um modelo de microlisímetro (ML) para medir a evaporação do solo em condições irrigada e não irrigada. Os MLs foram construídos utilizando tubos de PVC rígido, medindo 100 mm de diâmetro interno, 150 mm de profundidade e 2,5 mm de espessura da parede. Quatro MLs foram assentados sobre a superfície de dois lisímetros de pesagem de alta precisão conduzidos com solo nu, previamente instalados no Iapar, em Londrina-PR. Os lisímetros tinham dimensões de 1,4 m de largura, 1,9 m de comprimento e 1,3 m de profundidade, e estavam sendo conduzidos com e sem irrigação. A evaporação medida nos MLs (E ML) foi comparada com a medida nos lisímetros (E L), durante quatro períodos do ano. As diferenças entre E ML e E L foram mínimas para condições de baixa e elevada demanda atmosférica, e também para condições de solo irrigado ou não irrigado, indicado que o modelo de ML testado neste trabalho é adequado para medir a evaporação do solo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)