73 resultados para Sielectric strength
Resumo:
The aim of this study was to analyze the effect of successive TIG (tungsten inert gas) welding repairs on the reverse bending fatigue strength of AISI 4130 steel, which is widely used in components critical to the flight-safety. In order to simulate the abrupt maneuvers, wind bursts, motor vibration and helixes efforts, which generate cyclic bending loadings at the welded joints of a specific aircraft component called motor cradle, experimental reverse bending fatigue tests were carried out on specimens made from hot-rolled steel plate, 1.10 mm (0.043 in) thick, by mean of a SCHENK PWS equipment, with load ratio R = -1, under constant amplitude, at 30 Hz frequency and room temperature. It was observed that the bending fatigue strength decreases after the TIG (Tungsten Inert Gas) welding process application on AISI 4130 steel, with subsequent decrease due to re-welding sequence as well. Microstructural analyses and microhardness measurements on the base material, heat-affected zone (HAZ) and weld metal, as well as the effects of the weld bead geometry on the obtained results, have complemented this study.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fatigue failure is a result of a crack initiation and propagation, in consequence of a cyclical load. In aeronautical components as landing gear the fatigue strength is an important parameter to be considered in project, as well as the corrosion and wear resistance.The thermal sprayed HVOF technology it's normally used to protect components against wear and corrosion, and are being considerate an alternative to replace chromium by the aeronautical industry. With respect to fatigue life, the HVOF technique induces residual stress on the interface. In the case of tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. The technique to improve the coated materials fatigue strength is the shot peening process, which induces residual stress in the surface in order to delay the nucleation and propagation process.The aim of present study is to compare the influence of WC-10 Ni coating applied by HVOF on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue tests for material base, and tungsten carbide coated specimens. (C) 2010 Published by Elsevier Ltd.
Resumo:
In this work the effect of Gas Tungsten Arc Welding (GTAW) repairs on the axial fatigue strength of an AISI 4130 steel welded joint used in airframe critical to the flight-safety was investigated. Fatigue tests were performed at room temperature on 0.89 mm thick hot-rolled plates with constant amplitude and load ratio of R = 0.1, at 20 Hz frequency. Monotonic tensile tests, optical metallography and microhardness, residual stress and weld geometric factors measurements were also performed. The fatigue strength decreased with the number of GTAW repairs, and was related to microstructural and microhardness changes, as well as residual stress field and weld profile geometry factors, which gave origin to high stress concentration at the weld toe. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Stainless steels are used to intake and exhaust valves production applied as internal combustion engines. In general valves are requested to support cyclic stresses applied due to opening and closing processes during the operation. The objective of this research is to study the influence on the axial fatigue strength of the resulting microstructure after heat treatment at the martensitic X45CrSi93 steel, combined with different surface treatments as hard chrome-plating, nitride and grinding. It was verified a significant increase on the fatigue strength of the martensitic steel after nitriding, compared with results from the chrome-plating specimens. A slight increase in the tensile strength was also noticed on nitrided parts as a consequence of a resistance increase due to nitrogen and carbon solid solution. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11
Resumo:
This work is about the 21st century reinforced concrete analysis under the point of view of its constituent materials. First of all it is described the theoretical approach of the bending elements calculated based on the Norms BAEL 91 standarts. After that, numerical load-displacement are presented from reinforced concrete beams and plates validated by experimental data. The numerical modellings has been carried on in the program CASTEM 2000. In this program a elastoplastic model of Drucker-Prager defines the rupture surface of the concrete in non associative plasticity. The crack is smeared on the Gauss points of the finite elements with formation criterion starting from the definition of the rupture surface in the branch traction-traction of the Rankine model. The reinforcements were modeled in a discrete approach with perfect bond. Finally, a comparative analysis is made between the numerical results and calculated criteria showing the future of high performance reinforced concrete in this beginning of 21st century.
Resumo:
A anastomose arterial término-terminal é demorada, requer tempo prolongado de oclusão vascular e esta associada a necrose focal, infiltração leucocitária e, conseqüentemente, à fibrose e calcificação da parede arterial. A cola de fibrina é uma alternativa para a anastomose microvascular e pode evitar estas alterações com menor aderência aos tecidos vizinhos e melhor coaptação das bordas arteriais. OBJETIVO: Comparar o processo cicatricial de anastomoses convencionais com anastomoses feitas com cola de fibrina em artérias maiores. MÉTODOS: em 22 coelhos, ambas carótidas foram seccionadas transversalmente e reconstruídas por meio de anastomose término-terminal com 4 pontos simples de reparo e cola de fibrina de um lado (G1), e com 8 pontos separados do outro lado (G2). Após 3 e 15 dias, os animais foram destinados aleatoriamente para estudo de força tênsil concentração de hidroxiprolina (8 animais) e avaliação histológica das anastomoses (3 animais). As lâminas histológicas foram coradas pelo HE Masson e Picrossirius polarização (PSP). RESULTADOS: Após 3 e 15 dias a força tênsil aumenta em ambos os grupos, de 280,0± 32,6g para 432,2± 131,2g no Grupo 1 e de 221,4± 72,4g para 452,2± 132,0g no Grupo 2; sem diferença estatística entre os grupos em cada período. A concentração de hidroxiprolina expressa como razão hidroxiprolina/proteína, variou de 0,0816± 0,0651 para 0,0622± 0,0184 no Grupo 1 e de 0,0734± 0,0577 para 0,0460± 0,0271 no Grupo 2; sem diferença estatística entre os períodos e grupos. Os estudos histológicos mostraram discreto aumento das reações de inflamação e reparação no Grupo 2. A técnica PSP mostrou predomínio do colágeno tipo I em relação do colágeno tipo II nas anastomoses de ambos os grupos, sem diferença expressiva entre esses grupos. CONCLUSÃO: A anastomose com a cola de fibrina foi menos lesiva para a parede arterial do que a anastomose convencional. Mesmo usando menos pontos, as características de força tênsil e de cicatrização da anastomose com cola de fibrina foram similares em ambos os grupos. Os tempos de realização das anastomoses foram significativamente maiores do que na anastomose convencional.
Resumo:
OBJETIVO: Avaliar o efeito da desnutrição protéica na parede intestinal do rato através da medida de força de ruptura e dosagem do colágeno tecidual no íleo e cólon distal. MÉTODOS: Foram utilizados 120 ratos, pesando em média 100g, que receberam durante 07 dias uma dieta padrão, contendo 20% de caseína para adaptação dos animais as condições do biotério. Após esse período os animais foram divididos em dois grupos de 60, o controle denominado grupo um que recebeu a dieta padrão, e o grupo teste denominado grupo dois, que recebeu dieta hipoprotéica contendo 2% de caseína. Os dois grupos receberam suas respectivas dietas por um período de 21 dias. Após esse período iniciou-se o sacrifício seqüencial dos animais em ambos os grupos, em número de 12 animais em cada momento, correspondendo ao dia Zero (MO), 4º dia (M1), 7º dia (M2), 14º dia (M3), e 21º dia (M4) sendo mantida a mesma dieta até o final do sacrifício. em cada momento foram avaliados o peso corpóreo, albumina sanguínea, hidroxiprolina tecidual, relação hidroxiprolina/proteína tecidual e a força de ruptura no segmento ileal e cólico dos animais. RESULTADOS: Observou-se que a força de ruptura do segmento ileal e do cólon distal foi menor nos animais desnutridos (Grupo 2). A perda da resistência mecânica foi maior no segmento do cólon distal do que no segmento ileal, provavelmente pela menor concentração do colágeno tecidual no cólon distal. CONCLUSÃO: A desnutrição protéica induz a diminuição da resistência mecânica no íleo e no cólon distal associado a diminuição do colágeno tecidual na parede intestinal.
Resumo:
Objective: Pressure ulcer (PU) is a frequent complication of hip fracture. Studies were carried out to identify the risk factors of PU development after hip fractures. The objective of the study was to determine the role of anthropometric measurements and handgrip strength as predictors of PUs in patients with hip fractures during their hospital stay and 30 d after discharge, which has not yet been established.Methods: Ninety-two consecutive patients with hip fractures who were older than 65 y old and admitted to an orthopedic unit were prospectively evaluated. Within the first 72 h of admission, each patient's characteristics were recorded, anthropometric measurements were taken (circumferences of the arm, waist, thigh, calf, triceps, and biceps and subscapular and suprailiac skinfolds), handgrip strength was measured, and blood samples were collected. PU evaluations were performed during the hospital stay and 30 d after hospital discharge.Results: Three patients were excluded because of PUs before hospitalization. Eighty-nine patients (average age 80.6 +/- 7.5 y) were studied; 70.8% were women, and 49.4% developed PUs during their hospital stay. In a univariate analysis, length of hospital stay (P = 0.001) and handgrip strength (P = 0.02), but not body circumferences and skinfolds, were associated with PUs during a hospital stay. Only handgrip strength (P = 0.007) was associated with PUs 30 d after hospital discharge. In a multivariate analysis, only handgrip strength was found to predict PU development at these points.Conclusion: Handgrip strength was found to predict PU development in patients with hip fractures during their hospital stay and 30 d after discharge. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Study objectives: This study was developed to investigate the influence of thoracic and upperlimb muscle function on 6-min walk distance (6MWD) in patients with COPD.Design: A prospective, cross-sectional study.Setting: the pulmonary rehabilitation center of a university hospital.Patients: Thirty-eight patients with mild to very severe COPD were evaluated.Measurements and results: Pulmonary function and baseline dyspnea index (BDI) were assessed, handgrip strength, maximal inspiratory pressure (Pimax), and 6MWD were measured, and the one-repetition maximum (1RM) was determined for each of four exercises (bench press, lat pull down, leg extension, and leg press) performed on gymnasium equipment. Quality of life was assessed using the St. George Respiratory Questionnaire (SGRQ). We found statistically significant positive correlations between 6MWD and body weight (r = 0.32; p < 0.05), BDI (r = 0.50; p < 0.01), FEV, (r = 0.33; p < 0.05), PImax (r = 0.53; p < 0.01), and all values of 1RM. A statistically significant negative correlation was observed between 6MWD and dyspnea at the end of the 6-min walk test (r = -0.29; p < 0.05), as well as between 6MWD and the SGRQ activity domain (r = -0.45; p < 0.01) and impact domain (r = -0.34; p < 0.05) and total score (r = -0.40; p < 0.01). Multiple regression analysis selected body weight, BDI, Pimax, and lat pull down IRM as predictive factors for 6MWD (R-2 = 0.589).Conclusions: the results of this study showed the importance of the skeletal musculature of the thorax and upper limbs in submaximal exercise tolerance and could open new perspectives for training programs designed to improve functional activity in COPD patients.
Resumo:
Objective: To associate changes of body composition, muscle strength (MS) and plasma hormones (PH) in resistance-training protocol in sedentary postmenopausal women (PMW).Design: This randomized controlled trial, Brazilian 43 PMW (45-70-year-old) able for physical exercises were selected after they have accomplished medical and ethical criteria. They were assigned in two groups: RT, resistance training (n = 22); and CT, not trained control (n = 2 1); with supervision sessions of two to three exercise for large and one exercise for smaller groups in three series of 8-12 rep. (60-80% 1RM) for each exercise. The training period lasted 16 weeks and was preceded by low-load exercise (40-50% 1RM) adaptation period of 4 weeks (3/(times week)). Body weight, height, body mass index (BMI), and composition (BIA) along with fast-PH (FSH, LH, estrachol, cortisol, IGF-1 and testosterone) were assessed before (MO) and after (M 16) the 4 weeks period with the MS (1RM) determined also at 8 weeks (W). The values were correlated by Person's test and the means compared by Student's t-test and ANOVA.Results: At baseline both groups were similar in age, time of PMW, body composition, MS and fast-PH. However after 16 weeks, RT presented higher BMI (2. 1 %), IGF- 1 (37.8%) and MM gain (1.8 +/- 0.8 kg) than CT. MM correlated positively with IGF-1 (r = 0.45, p < 0.05) and MS progressively increased in all exercise greater in pectoral than legs and upper arms.Conclusion: Former sedentary postmenopausal women submitted to resistance training gained MM and MS irrespectively of fat mass changes but significantly associated with IGF-1 increase. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Study Design. Case-control study.Objective. To evaluate respiratory muscle force in children with myelomeningocele. Summary of Background Data. Myelomeningocele is a common spinal cord malformation with limitations linked to central nervous system lesions and abnormalities in respiratory movements. Despite this, little attention has been given to evaluating respiratory muscle force in these patients.Methods. Children with myelomeningocele aged between 4 and 14 years ( myelomeningocele group; MG, n = 20) were studied and compared with healthy children ( control group; CG, n = 20) matched for age and gender. Respiratory muscular force was evaluated by maximum inspiratory ( Pimax) and expiratory ( Pemax) pressures.Results. Groups were similar for age [ CG = 8 ( 6 - 13) = MG = 8 ( 4 - 14), P > 0.05]; gender, and body mass index [ CG = 17.4 ( 14.1 - 24.7) x MG = 19.2 ( 12.6 - 31.9), P > 0.05]. The lumbosacral region was predominantly affected ( 45%). Maximum respiratory pressures were significantly higher in CG than MG ( Pimax = CG: similar to 83 +/- 21.75 > MG: -54.1 +/- 23.66; P < 0.001 and Pemax = CG: + 87.4 +/- 26.28 > MG: + 64.6 +/- 26.97; P = 0.01). Patients with upper spinal lesion ( UL) had lower maximum respiratory pressure values than those with lower spinal lesion ( LL), [Pimax ( UL = - 38.33 +/- 11.20 cm H2O x LL = - 60.85 +/- 24.62 cm H2O), P < 0.041 and Pemax ( UL = + 48 +/- 20.82 cm H2O x LL + 71.71 +/- 26.73 cm H2O), P = 0.067]).Conclusion. Children with myelomeningocele at the ages studied presented reduced respiratory muscle force with more compromise in upper spinal lesion.