37 resultados para Sensor Data Fusion Applicazioni
Resumo:
Two Kalman-filter formulations are presented for the estimation of spacecraft sensor misalignments from inflight data. In the first the sensor misalignments are part of the filter state variable; in the second, which we call HYLIGN, the state vector contains only dynamical variables, but the sensitivities of the filter innovations to the misalignments are calculated within the Kalman filter. This procedure permits the misalignments to be estimated in batch mode as well as a much smaller dimension for the Kalman filter state vector. This results not only in a significantly smaller computational burden but also in a smaller sensitivity of the misalignment estimates to outliers in the data. Numerical simulations of the filter performance are presented.
Resumo:
Two Kalman-filter formulations are presented for the estimation of spacecraft sensor misalignments from inflight data. In the first the sensor misalignments are part of the filter state variable; in the second the state vector contains only dynamical variables, but the sensitivities of the filter innovations to the misalignments are calculated within the Kalman filter. This procedure permits the misalignments to be estimated in batch mode as well as a much smaller dimension for the Kalman filter state vector. This results not only in a significantly smaller computational burden but also in a smaller sensitivity of the misalignment estimates to outliers in the data. Numerical simulations of the filter performance are presented.
Resumo:
Four perylene derivatives (PTCD) have been used as transducing materials in taste sensors fabricated with nanostructured Langmuir-Blodgett (LB) films deposited onto interdigitated gold electrodes. The Langmuir monolayers of PTCDs display considerable collapse pressures, with areas per molecule indicative of an edge-on or head-on arrangement for the molecules at the air/water interface. The sensing units for the electronic tongue were produced from 5-layer LB films of the four PTCDs, whose electrical response was characterized with impedance spectroscopy. The distinct responses of the PTCDs, attributed to differences in their molecular structures, allowed one to obtain a finger printing system that was able to distinguish tastes (salty, sweet, bitter and sour) at 1 μM concentrations, which, in some cases, are three orders of magnitude below the human threshold. Using Principal Component Analysis (PCA) data analysis, the electronic tongue also detected trace amounts of a pesticide and could distinguish among samples of ultrapure, distilled and tap water, and two brands of mineral water. © 2004 by American Scientific Publishers. All rights reserved.
Resumo:
The interaction between humic substances and poly(o-ethoxyaniline) (POEA), a conducting polymer, was investigated for both solution and self-assembled films. The results have shown that the humic substances induce a doping of POEA by protonation, as indicated by UV-Vis and Raman spectroscopies. The atomic force microscopy (AFM) studies on the self-assembled films have shown that the average roughness of the polymer film has increased after exposing it to humic substances (fulvic and humic acids), consistent with the interaction between POEA and humic substances. However, this change in morphology is reversible by washing the films with water in agreement with the electrical data allowing using this system in sensor applications. Here, the sensor formed by an array of different sensing units was able to detect and distinguish humic substances in aqueous solution, as shown by multivariate analysis (principal component analysis). The motivation to detect humic substance comes due to its importance in terms of quality control of water or soil. ©2005 Sociedade Brasileira de Química.
Resumo:
The Paraguay River is the main tributary of the Paraná River and has an extension of 1.693 km in Brazilian territory. The navigability conditions are very important for the regional economy because most of the central-west Brazilian agricultural and mineral production is transported by the Paraguay waterway. Increased sedimentation along the channel requires continuous dredging to waterway maintenance. Systematic bathymetric surveys are periodically carried out in order to check depth condition along the channel using echo-sounding devices. In this paper, digital image processing and geostatistical analysis methods were used to analyze the applicability of the ASTER sensor to estimate channel depths in a segment of the upper Paraguay River. The results were compared with field data in order to choose the band with better adjustment and to evaluate the standard deviation. Comparing the VNIR bands, the best fit was presented by the red wavelength (band 2; 0,63 - 0,69 μm), showing a good representation of the channel depths shallow than 1,7 m. Applying geostatistical methods, the model accuracy was enhanced from 43 cm to 36 cm and undesired components were slacked. It was concluded that the digital number of band 2, converted to bathymetry information allows a good estimation of river depths and channel morphology.
Resumo:
The operational details of the apparent electrical conductivity (ECa) sensor manufactured by Veris Technologies have been extensively documented in literature reports, but the geographical distribution of these research studies indicate a strong regional concentration in the US Mid-west and Southern states. The agricultural lands of these states diverge significantly to the soil conditions and water regime of irrigated land in the US South-western states such as Arizona where there is no previous research reports of the use of this particular sensor. The objectives of the present study were to analyze the performance of this sensor under the conditions of typical soils in irrigated farms of Central Arizona. We tested under static conditions the performance of the sensor on three soils of contrasting texture. Observations were collected as time series data as soil moisture changed from saturation to permanent wilting point. Observations were repeated at the hours of lowest and highest temperatures. In addition, this study included soil penetration resistance and salinity determinations. Preliminary results indicate that soil temperature of the upper layer caused the most dynamic change in the sensor output. The ECa curves of the three soil textures tested had well defined distinctive characteristics. Final multivariate analysis is pending.
Resumo:
The good efficiency in a sewage treatment plant (WWTP) is a great importance to the environment. The management of electromechanical equipment installed in these stations is a major challenge due to the fact that they are installed on areas of difficult access and maintenance unhealthy and making the time for the correction of any faults is extended. This paper proposes the development of a Wireless Sensor Network (WSN), in order to monitor electromechanical equipment, allowing the Concessionaire a predictive control in real time. The design of a wireless sensors network for monitoring equipment requires not only the development and assembly of the sensor modules, but must also include the development of software for managing the data collected. Thus, this work includes a Zigbee WSN, small, adapted for monitoring of electromechanical equipment and environmental conditions of a WWTP, type stabilization pond, installed in an area of approximately 0.15 km 2 and the average flow of 320 liters of treatment per second. The experimental results show that this monitoring system can perform with the collection of parameters of performance and quality assessment at the station.
Resumo:
The main concern in Wireless Sensor Networks (WSN) algorithms and protocols are the energy consumption. Thus, the WSN lifetime is one of the most important metric used to measure the performance of the WSN approaches. Another important metric is the WSN spatial coverage, where the main goal is to obtain sensed data in a uniform way. This paper has proposed an approach called (m,k)-Gur Game that aims a trade-off between quality of service and the increasement of spatial coverage diversity. Simulation results have shown the effectiveness of this approach. © 2012 IEEE.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)