19 resultados para Seed Protein
Resumo:
The objective of this study was to compare the capacity of adult (more than 3 yr old) and young (less than 1 yr old) true parrots to digest seeds that are normally included in their diet in captivity, particularly soybean, sunflower, and corn. All the seeds were offered for 5 d with an interval of 15 d between different diets. The seeds of soybean and corn were boiled for 15 min and soaked in water at ambient temperature for 12 h before being fed to the birds. There were no differences in the digestibilities of crude protein and fats (ether extract) among animals, but the digestibilities of dry matter and crude fiber by the adult animals were higher than those of the young ones. The digestibility of carbohydrate (nitrogen-free extract) by adult birds was higher only for sunflower seeds. It is concluded that the capacity of parrots to digest fiber may change according to the age of the animal. Since the digestion of fiber depends on the action of microorganisms, these results suggest that the colonization of the gastrointestinal tract is delayed or very slow in young parrots.
Resumo:
The extract prepared from dried seeds of Cucurbita maxima was administered to rats and pigs. Following a single dose or 4 weeks of daily oral administration, the extract produced no changes in serum glucose, urea, creatinine, total protein, uric acid, GOT, GPT, LDH or blood counts. Urine analysis (urea, uric acid, creatinine, total protein, Na and K), as well as histopathological investigation, showed no abnormalities. These results taken as a whole indicate that the seeds of C. maxima as used in Brazilian folk medicine are not toxic for rats and swine.
Resumo:
The chickpea seed germination was carried out in 6 days. During the period it was observed a little variation on total nitrogen contents, however the non protein nitrogen was double. A decrease of 19.1 and 20.6% in relation to total nitrogen was observed to the total globulin and albumin fractions, respectively. The gel filtration chromatography on Sepharose CL-6B and SDS-PAGE demonstrated alterations on the distribution patterns of the albumin and total globulin fractions between the initial and the sixth day of germination suggesting the occurrence of protein degradation in the germination process.The assay for acid protease only appeared in the albumin fraction with casein and chickpea total globulin as substrates, whereas the former was more degradated than the latter, however the transformations detected in the protein fractions apppear indicated that others enzymes could be acting during the process. The trypsin inhibitor activity had a little drop after six day of germination indicating a possible increase on the digestibility of the proteins.
Resumo:
The objective of this experiment was to determine if frequency of protein supplementation impacts physiological responses associated with reproduction in beef cows. Fourteen nonpregnant, nonlactating beef cows were ranked by age and BW and allocated to 3 groups. Groups were assigned to a 3 x 3 Latin square design, containing 3 periods of 21 d and the following treatments: 1) soybean meal supplementation daily (D), 2) soybean meal supplementation 3 times/week (3WK), and 3) soybean meal supplementation once/week (1WK). Within each period, cows were assigned to an estrus synchronization protocol: 100 mu g of GnRH + controlled internal drug release device (CIDR) containing 1.38 g of progesterone (P-4) on d 1, 25 mg of PGF(2 alpha) on d 8, and CIDR removal + 100 mu g of GnRH on d 11. Grass-seed straw was offered for ad libitum consumption. Soybean meal was individually supplemented at a daily rate of 1 kg/cow (as-fed basis). Moreover, 3WK was supplemented on d 0, 2, 4, 7, 9, 11, 14, 16, and 18 whereas 1WK was supplemented on d 4, 11, and 18. Blood samples were collected from 0 (before) to 72 h after supplementation on d 11 and 18 and analyzed for plasma urea-N (PUN). Samples collected from 0 to 12 h were also analyzed for plasma glucose, insulin, and P-4 (d 18 only). Uterine flushing fluid was collected concurrently with blood sampling at 28 h for pH evaluation. Liver biopsies were performed concurrently with blood sampling at 0, 4, and 28 h and analyzed for mRNA expression of carbamoyl phosphate synthetase I (CPS-I; h 28) and CYP2C19 and CYP3A4 (h 0 and 4 on d 18). Plasma urea-N concentrations were greater (P < 0.01) for 1WK vs. 3WK from 20 to 72 h and greater (P < 0.01) for 1WK vs. D from 16 to 48 h and at 72 h after supplementation (treatment x hour interaction, P < 0.01). Moreover, PUN concentrations peaked at 28 h after supplementation for 3WK and 1WK (P < 0.01) and were greater (P < 0.01) at this time for 1WK vs. 3WK and D and for 3WK vs. D. Expression of CPS-I was greater (P < 0.01) for 1WK vs. D and 3WK. Uterine flushing pH tended (P <= 0.10) to be greater for 1WK vs. 3WK and D. No treatment effects were detected (P >= 0.15) on expression of CYP2C19 and CYP3A4, plasma glucose, and P-4 concentrations, whereas plasma insulin concentrations were greater (P <= 0.03) in D and 3WK vs. 1WK. Hence, decreasing frequency of protein supplementation did not reduce uterine flushing pH or plasma P-4 concentrations, which are known to impact reproduction in beef cows.