272 resultados para Sacarose
Resumo:
This study aimed to determine the effect of sucrose ester on the control of Varroa destructor mite infestation in Africanized honeybees. For the in vitro experiments, the product was tested in bees and mites at five concentrations obtained through dilution in water (T0: 100% distilled water; T1: 0.5%; T2: 1%; T3: 2%; T4: 5%; and T5: 10% sucrose ester).For the field studies, the experimental design was completely randomized, with four treatments and seven replicates, totaling 28 colonies, from which seven were the controls, seven were treated with 0.1% sucrose ester, seven with 0.2% sucrose ester, and seven hives with 0.5% sucrose ester diluted in water. In the in vitro study, the sucrose ester at 0.5% concentration caused mite and bee mortality. In the field tests, the product at 0.2% concentration reduced Varroa destructor infestation in Africanized honeybees and, therefore, may be used as a tool to control this pest. At 0.1, 0.2, and 0.5% concentrations, sucrose ester did not impair the establishment of open and capped brood areas, as well as stored food areas in the hive, suggesting it is not toxic to Africanized honeybees.
Resumo:
Objective: To characterize physically and chemically, non-sweetened orange juices and orange nectars sweetened with sucrose or sweet flavoring agents, with respect to their pH, titratable acidity (TA) and total soluble solids content (TSSC), as well as to evaluate the correlation of the latter property with the others. Method: Aliquots of three lots of two orange juices and two orange nectars containing sucrose and two containing sweet flavoring agents were evaluated. Mineral water was used as a control. The TSSC was determined using an Abbe refractometer. The pH was recorded using a digital pH meter, while TA was quantified by titrating samples of the beverages with 0.1 M NaOH until reaching pHs 5.5 and 7.0. Data were subjected to Pearson's correlation test, regression analysis, analysis of variance and Tukey's test (α=0.05). Results: TSSC values presented a strong correlation with TA, and these properties exhibited a quadratic relationship. Although the pH values were not dependent on the presence of sucrose or sweet flavoring agents, a significantly greater amount of base was necessary to reach pHs 5.5 and 7.0 in the beverages without sucrose or flavoring agents. Conclusion: Orange juices and nectars presented similar pH values, which was not associated with the presence of sucrose or sweet flavoring agents in the beverages. Higher TA values were obtained for the juice and lower for the nectars, regardless of containing sucrose or sweet flavoring agents. The increase of TSSC did not implicate in decrease of TA in the beverages.
Resumo:
This work aimed to study the influence of sucrose in the culture medium for in vitro growth and acclimatization of the epiphytic orchid Cattleya loddigesii. Five sucrose treatments (absence, 10, 20, 30 and 40g L-1) were used in a randomic experimental design. Mature seeds were sowed in 1/2 MS culture medium and after 90 days the plantlets (1.0 +/-0.2 cm) were inoculated between the treatments, whereby they were remained more 90 days. After 180 days of the beginning of the experiment the plantlets were removed from the flasks and evaluated the number of roots, shoot length, number of leafs, total dry weight and photosynthetic pigments. Survival percentage was evaluated after 75 days of acclimatization. The data of biometric variables were analyzed by Anovaand polynomial regression (p<0.05). Theothers data were submitted to the Anova and the means compared by the Tukey test (p<0.05). The sucrose concentration of 20g L-1 favored the in vitro growth in all evaluated parameters, showed higher production of chlorophyll a, total chlorophyll and carotenoids, in addition to increased survival under ex vitro condition. The sucrose concentration of 20g L-1 in the culture medium was the most efficient among the tested concentrations both for in vitro growth and ex vitro establishment of Cattleya loddigesii.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Desidratação osmótica da manga cv. Palmer em solução de sacarose com e sem adição de ácido ascórbico
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Fisiológicas - FOA
Resumo:
Pós-graduação em Ciências Fisiológicas - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)