30 resultados para SYNAPTIC HOMEOSTASIS
Resumo:
The median preoptic nucleus (MnPO) is one of most important site of the lamina terminalis implicated in the regulation of hydro electrolytic and cardiovascular balance. The purpose of this study was to determine the effect of L-Type calcium channel antagonist, nifedipine, on the increase of median arterial blood pressure (MAP) induce by angiotensin II (ANG II) injected into the MnPO. The influence of nitric oxide (NO) on nifedipine antipressor action has also been studied by utilizing N W-nitro-L-arginine methyl ester (L-NAME) (40 μg 0.2 μL -1) a NO synthase inhibitor (NOSI), 7-nitroindazole (7-NIT) (40 μg 0.2 μL -1), a specific neuronal NO synthase inhibitor (nNOSI) and sodium nitroprusside (SNP) (20 μg 0.2 μL -1) a NO donor agent. We have also investigated the central role of losartan and PD123349 (20 nmol 0.2 μL -1), AT 1 and AT 2, respectively (selective non peptide ANG II receptor antagonists), in the pressor effect of ANG II (25 pmol 0.2 μL -1) injected into the MnPO. Male Wistar rats weighting 200-250 g, with cannulae implanted into the MnPO were utilized. Losartan injected into the MnPO, prior to ANG II, blocked the pressor effect of ANGII. PD 123319 only decreased the pressor effect of ANG II. Rats pre-treated with either 50 μg 0.2 μL -1 or 100 μg 0.2 μL -1 of nifedipine, followed by 25 pmol 0.2 μL -1 of ANG II, decreased ANG II-pressor effect. L-NAME potentiated the pressor effect of ANG II. 7-NIT injected prior to ANG II into the MnPO also potentiated the pressor effect of ANGII but with less intensity than that of L-NAME. SNP injected prior to ANG II blocked the pressor effect of ANG II. The potentiation action of L-NAME and 7-NIT on ANG II-pressor effect was blocked by prior injection of nifedipine. The results described in this study provide evidence that calcium channels play important roles in central ANG II-induced pressor effect. The structures containing NO in the brain, such as MnPO, include both endothelial and neuronal cells, which might be responsible for the influence of nifedipine on the pressor effect of ANG II. These data have shown the functional relationship between L-Type calcium channel and a free radical gas NO in the MnPO, on the control of ANG II-induced pressor effect acting in AT 1 and AT 2 receptors.
Resumo:
Paracoccidioides brasiliensis is a dimorphic fungus that causes paracoccidioidomycosis, the most prevalent human deep mycosis in Latin America. The dimorphic transition from mycelium to yeast (M-Y) is triggered by a temperature shift from 25°C to 37°C and is critical for pathogenicity. Intracellular Ca 2+ levels increased in hyphae immediately after temperature-induced dimorphism. The chelation of Ca 2+ with extracellular (EGTA) or intracellular (BAPTA) calcium chelators inhibited temperature-induced dimorphism, whereas the addition of extracellular Ca 2+ accelerated dimorphism. The calcineurin inhibitor cyclosporine A (CsA), but not tacrolimus (FK506), effectively decreased cell growth, halted the M-Y transition that is associated with virulence, and caused aberrant growth morphologies for all forms of P. brasiliensis. The difference between CsA and FK506 was ascribed by the higher levels of cyclophilins contrasted to FKBPs, the intracellular drug targets required for calcineurin suppression. Chronic exposure to CsA abolished intracellular Ca 2+ homeostasis and decreased mRNA transcription of the CCH1 gene for the plasma membrane Ca 2+ channel in yeast-form cells. CsA had no detectable effect on multidrug resistance efflux pumps, while the effect of FK506 on rhodamine excretion was not correlated with the transition to yeast form. In this study, we present evidence that Ca 2+/calmodulin-dependent phosphatase calcineurin controls hyphal and yeast morphology, M-Y dimorphism, growth, and Ca 2+ homeostasis in P. brasiliensis and that CsA is an effective chemical block for thermodimorphism in this organism. The effects of calcineurin inhibitors on P. brasiliensis reinforce the therapeutic potential of these drugs in a combinatory approach with antifungal drugs to treat endemic paracoccidioidomycosis. Copyright © 2008, American Society for Microbiology. All Rights Reserved.
Resumo:
Physical activity is considered an extremely effective therapy in cases of type 1 diabetes (DM-1), as it promotes glucose uptake independent of insulin action. However, there are few studies on the effect of a single session of exercise on glucose uptake in DM-1 (i.e., in the absence of insulin). Therefore, the purpose of this study was to assess the effect of a single exercise session on glucose homeostasis in DM-1 rats. For this purpose, 30 male rats were divided into three groups: sedentary control (SC), sedentary diabetic (SD), and exercise diabetic (ED). DM was induced by administration of alloxan and identified by the value of fasting glucose. The physical activity consisted of a single swimming session at the anaerobic threshold intensity for diabetic rats (3.5% body weight overload) for 30 min. The oral glucose tolerance test (OGTT) was performed immediately after the physical activity. The animals were sacrificed 48 hr after the OGTT, and samples were taken from the blood, liver, gastrocnemius, and mesenteric and subcutaneous adipose tissue. We observed that DM caused significant reduction in body weight. A single session of physical activity did not modify the response to the OGTT or glucose. However, it resulted in increased HDL cholesterol and hepatic glycogen content. These results suggest that, despite not having an effect on glucose homeostasis, acute physical activity performed at anaerobic threshold intensity leads to beneficial changes in the context of type 1 diabetes.
Resumo:
Background:Ventral root avulsion is an experimental model of proximal axonal injury at the central/peripheral nervous system interface that results in paralysis and poor clinical outcome after restorative surgery. Root reimplantation may decrease neuronal degeneration in such cases. We describe the use of a snake venom-derived fibrin sealant during surgical reconnection of avulsed roots at the spinal cord surface. The present work investigates the effects of this fibrin sealant on functional recovery, neuronal survival, synaptic plasticity, and glial reaction in the spinal motoneuron microenvironment after ventral root reimplantation.Methodology/Principal Findings:Female Lewis rats (7 weeks old) were subjected to VRA and root replantation. The animals were divided into two groups: 1) avulsion only and 2) replanted roots with fibrin sealant derived from snake venom. Post-surgical motor performance was evaluated using the CatWalk system twice a week for 12 weeks. The rats were sacrificed 12 weeks after surgery, and their lumbar intumescences were processed for motoneuron counting and immunohistochemistry (GFAP, Iba-1 and synaptophysin antisera). Array based qRT-PCR was used to evaluate gene regulation of several neurotrophic factors and receptors as well as inflammatory related molecules. The results indicated that the root reimplantation with fibrin sealant enhanced motor recovery, preserved the synaptic covering of the motoneurons and improved neuronal survival. The replanted group did not show significant changes in microglial response compared to VRA-only. However, the astroglial reaction was significantly reduced in this group.Conclusions/Significance:In conclusion, the present data suggest that the repair of avulsed roots with snake venom fibrin glue at the exact point of detachment results in neuroprotection and preservation of the synaptic network at the microenvironment of the lesioned motoneurons. Also such procedure reduced the astroglial reaction and increased mRNA levels to neurotrophins and anti-inflammatory cytokines that may in turn, contribute to improving recovery of motor function. © 2013 Barbizan et al.
Resumo:
Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A(2A) receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [H-3]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A(2A) receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (03 mM)-induced transmitter release facilitation, because its effect was prevented by the A(2A) receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M-1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M-2 and Al receptors blocked by methoctramine (0.1 mu M) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A(2A) receptors by endogenous adenosine leading to synaptic vesicle redistribution. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.
Resumo:
Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in P. brasiliensis. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiliensis. Interestingly, in silico analysis of the genomes of P. brasiliensis Pb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways.