21 resultados para STOCHASTIC MODELS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Power-law distributions, i.e. Levy flights have been observed in various economical, biological, and physical systems in high-frequency regime. These distributions can be successfully explained via gradually truncated Levy flight (GTLF). In general, these systems converge to a Gaussian distribution in the low-frequency regime. In the present work, we develop a model for the physical basis for the cut-off length in GTLF and its variation with respect to the time interval between successive observations. We observe that GTLF automatically approach a Gaussian distribution in the low-frequency regime. We applied the present method to analyze time series in some physical and financial systems. The agreement between the experimental results and theoretical curves is excellent. The present method can be applied to analyze time series in a variety of fields, which in turn provide a basis for the development of further microscopic models for the system. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.
Resumo:
The transcription process is crucial to life and the enzyme RNA polymerase (RNAP) is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites. © 2013 Costa et al.
Resumo:
Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the Universe. We carry out a search for the stochastic background with the latest data from the LIGO and Virgo detectors. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of Omega(GW)(f) = Omega(alpha)(f/f(ref))(alpha), we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5-1726 Hz. In the frequency band of 41.5-169.25 Hz for a spectral index of alpha = 0, we constrain the energy density of the stochastic background to be Omega(GW)(f) < 5.6 x 10(-6). For the 600-1000 Hz band, Omega(GW)(f) < 0.14(f/900 Hz)(3), a factor of 2.5 lower than the best previously reported upper limits. We find Omega(GW)(f) < 1.8 x 10(-4) using a spectral index of zero for 170-600 Hz and Omega(GW)(f) < 1.0(f/1300 Hz)(3) for 1000-1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the possible evidence for inflationary gravitational waves.
Resumo:
Complex non-linear interactions between banks and assets we model by two time-dependent Erdos-Renyi network models where each node, representing a bank, can invest either to a single asset (model I) or multiple assets (model II). We use a dynamical network approach to evaluate the collective financial failure -systemic risk- quantified by the fraction of active nodes. The systemic risk can be calculated over any future time period, divided into sub-periods, where within each sub-period banks may contiguously fail due to links to either i) assets or ii) other banks, controlled by two parameters, probability of internal failure p and threshold T-h ("solvency" parameter). The systemic risk decreases with the average network degree faster when all assets are equally distributed across banks than if assets are randomly distributed. The more inactive banks each bank can sustain (smaller T-h), the smaller the systemic risk -for some Th values in I we report a discontinuity in systemic risk. When contiguous spreading becomes stochastic ii) controlled by probability p(2) -a condition for the bank to be solvent (active) is stochasticthe- systemic risk decreases with decreasing p(2). We analyse the asset allocation for the U.S. banks. Copyright (C) EPLA, 2014