51 resultados para SMART cDNA
Resumo:
With the aim of further understanding the structure/function relationships in the membrane-damaging activity of the Lys(49) phospholipase A(2) (Lys(49)-PLA(2)) sub-family, we used PCR (polymerase chain reaction) on total venom gland cDNAs from Bothrops jararacussu with degenerate oligodeoxyribonucleotides encoding the N- and C-termini of myotoxin II, a Lys(49)-PLA(2) from Bothrops asper. A 350-bp cDNA coding for bothropstoxin I (BtxtxI) was amplified. Sequencing of the amplified fragment shows that BtxtxI has a Lys(49), and comparison with the known structure of myotoxin II showed that the amino acids involved in the formation of a novel dimeric structure in this protein were also conserved.
Resumo:
This paper presents a non-model based technique to detect and locate structural damage with the use of artificial neural networks. This method utilizes high frequency structural excitation (typically greater than 30 kHz) through a surface-bonded piezoelectric sensor/actuator to detect changes in structural point impedance due to the presence of damage. Two sets of artificial neural networks were developed in order to detect, locate and characterize structural damage by examining changes in the measured impedance curves. A simulation beam model was developed to verify the proposed method. An experiment was successfully performed in detecting damage on a 4-bay structure with bolted-joints, where the bolts were progressively released.
Small-angle X-ray scattering study of the smart thermo-optical behavior of zirconyl aqueous colloids
Resumo:
The smart thermo-optical systems studied here are based on the unusual thermoreversible sol-gel transition of zirconyl chloride aqueous solution modified by sulfuric acid in the molar ratio Zr/SO4:3/1. The transparency to the visible light changes during heating due to light scattering. This feature is related to the aggregates growth that occurs during gelation. These reversible changes can be controlled by the amount of chloride ions in solution. The thermoreversible sol-gel transition temperature increases from 323 to 343 K by decreasing the molar ratio Cl/Zr from 7.0 to 1.3. In this work the effect of the concentration of chloride ions on the structural characteristics of the system has been analyzed by in situ SAXS measurements during the sol-gel transition carried out at 323 and 333 K. The experimental SAXS curves of sols exhibit three regions at small, medium and high scattering vectors characteristics of Guinier, fractal and Porod regimes, respectively. The radius of primary particles, obtained from the crossover between the fractal and Porod regimes, remains almost invariable with the chloride concentration, and the value (4 Angstrom) is consistent with the size of the molecular precursor. During the sol-gel transition the aggregates grow with a fractal structure and the fractal dimensionality decreases from 2.4 to 1.8. This last value is characteristic of a cluster-cluster aggregation controlled by a diffusion process. Furthermore, the time exponent of aggregate growth presents values of 0.33 and 1, typical of diffusional and hydrodynamic motions. A crossover between these two regimes is observed.
Resumo:
Smart microgrids offer a new challenging domain for power theories and metering techniques because they include a variety of intermittent power sources which positively impact on power flow and distribution losses but may cause voltage asymmetry and frequency variation. In smart microgrids, the voltage distortion and asymmetry in presence of poly-phase nonlinear loads can be also greater than in usual distribution lines fed by the utility, thus affecting measurement accuracy and possibly causing tripping of protections. In such a context, a reconsideration of power theories is required since they form the basis for supply and load characterization. A revision of revenue metering techniques is also suggested to ensure a correct penalization of the loads for their responsibility in generating reactive power, voltage asymmetry, and distortion. This paper shows that the conservative power theory provides a suitable background to cope with smart grids characterization and metering needs. Simulation and experimental results show the properties of the proposed approach.
Resumo:
Granulocyte colony-stimulating factor (G-CSF) acts on precursor hematopoietic cells to control the production and maintenance of neutrophils. Recombinant G-CSF (re-G-CSF)is used clinically to treat patients with neutropenia and has greatly reduced the infection risk associated with bone marrow transplantation. Cyclic hematopoiesis, a stem cell defect characterized by severe recurrent neutropenia, occurs in man and grey collie dogs, and can be treated by administration of re-G-CSF. Availability of the rat G-CSF cDNA would benefit the use of rats as models of gene therapy for the treatment of cyclic hematopoiesis. In preliminary rat experiments, retroviral-mediated expression of canine G-CSF caused neutralizing antibody formation which precluded long-term increases in neutrophil counts. To overcome this problem we cloned the rat G-CSF cDNA from RNA isolated from skin fibroblasts. The rat G-CSF sequence shared a high degree of identity in both the coding and non-coding regions with both the murine G-CSF (85%) and human G-CSF (74%). The signal peptides of murine and human G-CSF both contained 30 amino acids (aa), whereas the deduced signal sequence for rat G-CSF possessed 21 aa. A retrovirus encoding the rat G-CSF cDNA synthesized bioactive G-CSF from transduced vascular smooth muscle cells.
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
In order to identify genes expressed in the pistil that may have a role in the reproduction process, we have established an expressed sequence tags project to randomly sequence clones from a Nicotiana tabacum stigma/style cDNA library. A cDNA clone (MTL-8) showing high sequence similarity to genes encoding glycine-rich RNA-binding proteins was chosen for further characterization. Based on the extensive identity of MTL-8 to the RGP-1a sequence of N. sylvestris, a primer was defined to extend the 5′ sequence of MTL-8 by RT-PCR from stigma/style RNAs. The amplification product was sequenced and it was confirmed that MTL-8 corresponds to an mRNA encoding a glycine-rich RNA-binding protein. Two transcripts of different sizes and expression patterns were identified when the MTL-8 cDNA insert was used as a probe in RNA blots. The largest is 1,100 nucleotides (nt) long and markedly predominant in ovaries. The smaller transcript, with 600 nt, is ubiquitous to the vegetative and reproductive organs analyzed (roots, stems, leaves, sepals, petals, stamens, stigmas/styles and ovaries). Plants submitted to stress (wounding, virus infection and ethylene treatment) presented an increased level of the 600-nt transcript in leaves, especially after tobacco necrosis virus infection. In contrast, the level of the 1,100-nt transcript seems to be unaffected by the stress conditions tested. Results of Southern blot experiments have suggested that MTL-8 is present in one or two copies in the tobacco genome. Our results suggest that the shorter transcript is related to stress while the larger one is a flower predominant and nonstress-inducible messenger.
Resumo:
Studies on firefly (Lampyridae) luciferases have focused on nearctic species of Photinus and Photuris and Euroasiatic species of Lampyris, Luciola, Hotaria, and Pyrocoelia. Despite accounting for the greatest diversity of fireflies in the world, no molecular studies have been carried out on the highly diverse genera from the neotropical region. Here we report the luciferase cDNA cloning for the larva of the Brazilian firefly Cratomorphus distinctus. The cDNA has 1978 bp and codes for a 547-residue-long polypeptide. Noteworthy, sequence comparison as well as functional properties show the highest degree of similarity with Lampyris noctiluca (93%) and Pyrocoelia spp. (91%) luciferases, suggesting a close phylogenetic relationship despite the geographical distance separating these species. The bioluminescence emission spectrum peaks at 550 nm and, as expected, is sensitive to pH, shifting to 605 nm at pH 6. The kinetic properties of the recombinant luciferase were similar to those of other firefly luciferases. © 2004 Elsevier Inc. All rights reserved.
Resumo:
The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft and aerospace structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. This article shows some steps that should be followed in the design of a smart structure. It is discussed: the optimal placement of actuators, the model reduction and the controller design through techniques involving linear matrix inequalities (LMI). It is considered as constraints in LMI: the decay rate, voltage input limitation in the actuators and bounded output peak (output energy). Two controllers robust to parametric variation are designed: the first one considers the actuator in non-optimal location and the second one the actuator is put in an optimal placement. The performance are compared and discussed. The simulations to illustrate the methodology are made with a cantilever beam with bonded piezoelectric actuators.
Resumo:
The correct identification of all human genes, and their derived transcripts, has not yet been achieved, and it remains one of the major aims of the worldwide genomics community. Computational programs suggest the existence of 30,000 to 40,000 human genes. However, definitive gene identification can only be achieved by experimental approaches. We used two distinct methodologies, one based on the alignment of mouse orthologous sequences to the human genome, and another based on the construction of a high-quality human testis cDNA library, in an attempt to identify new human transcripts within the human genome sequence. We generated 47 complete human transcript sequences, comprising 27 unannotated and 20 annotated sequences. Eight of these transcripts are variants of previously known genes. These transcripts were characterized according to size, number of exons, and chromosomal localization, and a search for protein domains was undertaken based on their putative open reading frames. In silico expression analysis suggests that some of these transcripts are expressed at low levels and in a restricted set of tissues.
Resumo:
IEEE 1451 Standard is intended to address the smart transducer interfacing problematic in network environments. Usually, proprietary hardware and software is a very efficient solution to in planent the IEEE 1451 normative, although can be expensive and inflexible. In contrast, the use of open and standardized tools for implementing the IEEE 1451 normative is proposed in this paper. Tools such as Java and Phyton programming languages, Linux, programmable logic technology, Personal Computer resources and Ethernet architecture were integrated in order to constructa network node based on the IEEE 1451 standards. The node can be applied in systems based on the client-server communication model The evaluation of the employed tools and expermental results are presented. © 2005 IEEE.
Resumo:
A finite element modeling of an intelligent truss structure with piezoelectric stack actuators for the purpose of active damping and structural vibration attenuation is presented. This paper concerns with the following issues aspects: the design of intelligent truss structure considering electro-mechanical coupling between the host structure and piezoelectric stack actuators; the H 2 norm approach to search for optimal placement of actuators and sensors; and finally some aspects in robust control techniques. The electro-mechanical behavior of piezoelectric elements is directly related to the successful application of the actuators in truss structures. In order to achieve the desired damping in the interested bandwidth frequency it is used the H ∞ output feedback solved by convex optimization. The constraints to be reached are written by linear matrix inequalities (LMI). The paper concludes with a numerical example, using Matlab and Simulink, in a cantilevered, 2-bay space truss structure. The results demonstrated the approach applicability.
Resumo:
Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407 ± 15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed β(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-β-d-glucopyranose units in chitin. The full-length amino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 Å resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (βα) 8 barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182. © 2006 The Authors.
Resumo:
Smart micro-grids offer a new challenging domain for power theories and metering techniques, because they include a variety of intermittent power sources which positively impact on power flow and distribution losses, but may cause voltage asymmetry and frequency variation. Due to the limited power capability of smart micro-grids, the voltage distortion can also get worse (in case of supplying non-linear loads), affecting measurement accuracy and possibly causing tripping of protections. In such a context, a reconsideration of power theories is required, since they form the basis for supply and load characterization. A revision of revenue metering techniques is also needed, to ensure a correct penalization of the loads for their responsibility in generating reactive power, voltage unbalance and distortion. This paper shows that the Conservative Power Theory (CPT) provides a suitable background to cope with smart grids characterization and metering needs. Experimental results validate the proposed approach. © 2010 IEEE.