31 resultados para SEQUENCE EVOLUTION
Resumo:
Reproductive castes are compared in species of swarming wasps representing all currently recognized genera of Epiponini (Polistinae). New morphometric data for nine measures of body parts and ovarian data are presented for 13 species. These are integrated with all similarly conducted available studies, giving a total of 30 species. Analysis reveals several syndromes relating reproductive and nonreproductive individuals: no meaningful distinction, physiological differences only, reproductives larger than nonreproductives with intermediate individuals present, reproductives different in shape from nonreproductives with no intermediates, and reproductives smaller in some aspects than nonreproductives. Distribution of these syndromes among species is consistent with phylogenetic relationships derived from other data. Optimizing these syndromes on the cladogram indicates that the basal condition of Epiponini is a casteless society that is not comparable to the primitively social genus Polistes where dominant queens control reproduction. Castes originate several times in Epiponini, with different results in different lineages. The best documented evolutionary sequence passes from casteless societies, to those with reproductives larger, to those with reproductives differing in shape from nonreproductives, to those with reproductives smaller in some measures. This sequence is consistent with Wheeler's theory of the origin of caste through developmental switches, and represents the most thorough test of that theory to date.
Resumo:
Although the retrotransposon copia has been studied in the melanogaster group of Drosophila species, very little is known about copia dynamism and evolution in other groups. We analyzed the occurrence and heterogeneity of the copia 5' LTR-ULR partial sequence and their phylogenetic relationships in 24 species of the repleta group of Drosophila. PCR showed that copia occurs in 18 out of the 24 species evaluated. Sequencing was possible in only eight species. The sequences showed a low nucleotide diversity, which suggests selective constraints maintaining this regulatory region over evolutionary time. on the contrary, the low nucleotide divergence and the phylogenetic relationships between the D. willistoni/Zaprionus tuberculatus/melanogaster species subgroup suggest horizontal transfer. Sixteen transcription factor binding sites were identified in the LTR-ULR repleta and melanogaster consensus sequences. However, these motifs are not homologous, neither according to their position in the LTR-ULR sequences, nor according to their sequences. Taken together, the low motif homologies, the phylogenetic relationship and the great nucleotide divergence between the melanogaster and repleta copia sequences reinforce the hypothesis that there are two copia families.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Coleoptera order is the richest group among Metazoa, but its phylogenetics remains incompletely understood. Among Coleoptera, bioluminescence is found within the Elateroidea, but the evolution of this character remains a mystery. Mitochondrial DNA has been used extensively to reconstruct phylogenetic relationships, however, the evolution of a single gene does not always correspond to the species evolutionary history and the molecular marker choice is a key step in this type of analysis. To create a solid basis to better understand the evolutionary history of Coleoptera and its bioluminescence, we sequenced and comparatively analyzed the mitochondrial genome of the Brazilian luminescent click beetle Pyrophorus divergens (Coleoptera: Elateridae). © 2007 Elsevier B.V. All rights reserved.
Resumo:
Background:Hepatitis C is a disease spread throughout the world. Hepatitis C virus (HCV), the etiological agent of this disease, is a single-stranded positive RNA virus. Its genome encodes a single precursor protein that yields ten proteins after processing. NS5A, one of the non-structural viral proteins, is most associated with interferon-based therapy response, the approved treatment for hepatitis C in Brazil. HCV has a high mutation rate and therefore high variability, which may be important for evading the immune system and response to therapy. The aim of this study was to analyze the evolution of NS5A quasispecies before, during, and after treatment in patients infected with HCV genotype 3a who presented different therapy responses.Methods:Viral RNA was extracted, cDNA was synthesized, the NS5A region was amplified and cloned, and 15 clones from each time-point were sequenced. The sequences were analyzed for evolutionary history, genetic diversity and selection.Results:This analysis shows that the viral population that persists after treatment for most non-responder patients is present in before-treatment samples, suggesting it is adapted to evade treatment. In contrast, the population found in before treatment samples from most end-of-treatment responder patients either are selected out or appears in low frequency after relapse, therefore changing the population structure. The exceptions illustrate the uniqueness of the evolutionary process, and therefore the treatment resistance process, in each patient.Conclusion:Although evolutionary behavior throughout treatment showed that each patient presented different population dynamics unrelated to therapy outcome, it seems that the viral population from non-responders that resists the treatment already had strains that could evade therapy before it started. © 2013 Bittar et al.
Resumo:
The PRP8 intein is the most widespread intein among the Kingdom Fungi. This genetic element occurs within the prp8 gene, and is transcribed and translated simultaneously with the gene. After translation, the intein excises itself from the Prp8 protein by an autocatalytic splicing reaction, subsequently joining the N and C terminals of the host protein, which retains its functional conformation. Besides the splicing domain, some PRP8 inteins also have a homing endonuclease (HE) domain which, if functional, makes the intein a mobile element capable of becoming fixed in a population. This work aimed to study (1) The occurrence of this intein in Histoplasma capsulatum isolates (n=. 99) belonging to different cryptic species collected in diverse geographical locations, and (2) The functionality of the endonuclease domains of H. capsulatum PRP8 inteins and their phylogenetic relationship among the cryptic species. Our results suggest that the PRP8 intein is fixed in H. capsulatum populations and that an admixture or a probable ancestral polymorphism of the PRP8 intein sequences is responsible for the apparent paraphyletic pattern of the LAmA clade which, in the intein phylogeny, also encompasses sequences from LAmB isolates. The PRP8 intein sequences clearly separate the different cryptic species, and may serve as an additional molecular typing tool, as previously proposed for other fungi genus, such as Cryptococcus and Paracoccidioides. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.Results: Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.Conclusions: While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)