139 resultados para SEMI-VOLATILE ORGANIC COMPOUNDS
Resumo:
The aim of this work is to study the local impact on the upper troposphere/lower stratosphere air composition of an extreme deep convective system. For this purpose, we performed a simulation of a convective cluster composed of many individual deep convective cells that occurred near Bauru (Brazil). The simulation is performed using the 3-D mesoscale model RAMS coupled on-line with a chemistry model. The comparisons with meteorological measurements show that the model produces meteorological fields generally consistent with the observations. The present paper (part I) is devoted to the analysis of the ozone precursors (CO, NO x and non-methane volatile organic compounds) and HO x in the UTLS. The simulation results show that the distribution of CO with altitude is closely related to the upward convective motions and consecutive outflow at the top of the convective cells leading to a bulge of CO between 7 km altitude and the tropopause (around 17km altitude). The model results for CO are consistent with satellite-borne measurements at 700 hPa. The simulation also indicates enhanced amounts of NO x up to 2 ppbv in the 7-17 km altitude layer mainly produced by the lightning associated with the intense convective activity. For insoluble non-methane volatile organic compounds, the convective activity tends to significantly increase their amount in the 7-17km layer by dynamical effects. During daytime in the presence of lightning NO x, this bulge is largely reduced in the upper part of the layer for reactive species (e.g. isoprene, ethene) because of their reactions with OH that is increased on average during daytime. Lightning NO x also impacts on the oxydizing capacity of the upper troposphere by reducing on average HO x, HO 2, H 2O 2 and organic hydroperoxides. During the simulation time, the impact of convection on the air composition of the lower stratosphere is negligible for all ozone precursors although several of the simulated convective cells nearly reach the tropopause. There is no significant transport from the upper troposphere to the lower stratosphere, the isentropic barrier not being crossed by convection. The impact of the increase of ozone precursors and HO x in the upper troposphere on the ozone budget in the LS is discussed in part II of this series of papers.
Resumo:
The use of inks containing organic solvents by the offset printing process implies in the release of volatile organic compounds to the work environment. Many of these compounds such as benzene, toluene, ethylbenzene, and the xylene isomers (well known by the acronym BTEX) are extremely toxic. In this study, the BTEX concentrations were determined in two different printing plants that use distinct types of inks: the conventional and the so-called ecological, which is manufactured based on vegetal oil. Concentration ranges were 43-84, 15-3,480, 2-133, 5-459, and 2-236 μg m-3 for benzene, toluene, ethylbenzene, m + p-xylene, and o-xylene, respectively, for the conventional printing plant. At the ecological printing plant, concentration ranges were below limit of detection (
Resumo:
Petroleum and derivatives have been considered one of the main environmental contaminants. Among petroleum derivatives, the volatile organic compounds benzene, toluene, ethylbenzene and xylene (BTEX) represent a major concern due to their toxicity and easy accumulation in groundwater. Biodegradation methods seem to be suitable tools for the clean-up of BTEX contaminants from groundwater. Genotoxic and mutagenic potential of BTEX prior and after biodegradation process was evaluated through analyses of chromosomal aberrations and MN test in meristematic and F 1 root cells using the Allium cepa test system. Seeds of A. cepa were germinated into five concentrations of BTEX, non-biodegraded and biodegraded, in ultra-pure water (negative control), in MMS 4×10 -4M (positive control) and in culture medium used in the biodegradation (blank biodegradation control). Results showed a significant frequency of both chromosomal and nuclear aberrations. The micronucleus (MN) frequency in meristematic cells was significant for most of tested samples. However, MN was not present in significant levels in the F 1 cells, suggesting that there was no permanent damage for the meristematic cell. The BTEX effects were significantly reduced in the biodegraded samples when compared to the respective non-biodegraded concentrations. Therefore, in this study, the biodegradation process showed to be a reliable and effective alternative to treat BTEX-contaminated waters. Based on our results and available data, the BTEX toxicity could also be related to a synergistic effect of its compounds. © 2011 Elsevier Ltd.
Resumo:
The BTEX (benzene, toluene, ethylbenzene and xylene) mixture is an environmental pollutant that has a high potential to contaminate water resources, especially groundwater. The bioremediation process by microorganisms has often been used as a tool for removing BTEX from contaminated sites. The application of biological assays is useful in evaluating the efficiency of bioremediation processes, besides identifying the toxicity of the original contaminants. It also allows identifying the effects of possible metabolites formed during the biodegradation process on test organisms. In this study, we evaluated the genotoxic and mutagenic potential of five different BTEX concentrations in rat hepatoma tissue culture (HTC) cells, using comet and micronucleus assays, before and after biodegradation. A mutagenic effect was observed for the highest concentration tested and for its respective non-biodegraded concentration. Genotoxicity was significant for all non-biodegraded concentrations and not significant for the biodegraded ones. According to our results, we can state that BTEX is mutagenic at concentrations close to its water solubility, and genotoxic even at lower concentrations, differing from some described results reported for the mixture components, when tested individually. Our results suggest a synergistic effect for the mixture and that the biodegradation process is a safe and efficient methodology to be applied at BTEX-contaminated sites. © 2012 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Previous studies show that in areas contaminated by fuel spill (NAPL- non-aqueous phase liquids), from operational activities, transport and storage, it was possible to observe a significant decrease of ²²²Rn (radon) gas concentration in the soil, even a non-uniform distribution of this gas in top soil, even with a geological situation was practically homogeneous. These anomalies may be associated with the preference partitioning of radon in NAPLs. This work consists of applying ²²²Rn as an indicator for locating subsurface contamination by NAPLs in an area of the city of Rio Claro (SP) where, according to the “Survey of Contaminated and Rehabilitated Areas in the State of São Paulo (Environmental Sanitation and Technology Company - CETESB), there was, in the year 2007, groundwater contamination from leaks of liquid fuels. The challenges of this research are: Promulgate the use of a new tool with greater efficiency in obtaining results, in addition to generate less impact in half and have less expenditure; disseminate scientific culture promoting greater integration of C&T (culture & technology) between universities and businesses. The emanometric technique to estimate the location, number and interfacial area of NAPL in saturated and non-saturated zone, has the advantage of locating and determining plumes of free phase even when the amount of VOC's (Volatile Organic Compounds) that reaches the surface is low or non-existent. In addition, the measurement techniques ²²²Rn are quite developed. The results obtained show that, similar to the other studies, the 222Rn soil gas presents an anomalous behavior in the area bounded by NAPL plume, being possible to note a significant deficit in the concentration of the gas in spots where the saturation by NAPLs is still critical. Therefore it is concluded that this tool is really promising, but we must be careful to evaluate the initial conditions of the area, as well as the type of...
Resumo:
This work describes the production and characterization of a selective membrane useful for electronic devices. The membrane was a composite made by a thin film of plasma-polymerized HFE (methyl nonafluoro(iso)butyl ether) immersed in plasma-polymerized HMDS (hexamethyldisilazane) film, a third phase being 5 µm starch particles included in this matrix. The film was deposited on silicon substrates and its physical, chemical and adsorption characteristics were determined. Infrared and x-ray photoelectron spectroscopy analyses showed fluorine and carboxyl groups on the bulk and the surface, respectively. SEM results indicate the film is conformal even if starch is present. Optical microscopy analysis showed good resistance toward acid and base solutions. Quartz crystal microbalance indicated adsorption of polar organic compounds on ppm range. This thin film is environment-friendly and can be used as a protective layer or in electronic devices due to adsorption of volatile organic compounds.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This review focuses on the heterogeneous photocatalytic treatment of organic dyes in air and water. Representative studies spanning approximately three decades are included in this review. These studies have mostly used titanium dioxide (TiO2) as the inorganic semiconductor photocatalyst of choice for decolorizing and decomposing the organic dye to mineralized products. Other semiconductors such as ZnO, CdS, WO3, and Fe2O3 have also been used, albeit to a much smaller extent. The topics covered include historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H2O2, ozonation, UV/O3, Fenton and photo-Fenton reactions), visible light-induced dye decomposition by sensitization mechanism, reaction intermediates and toxicity issues, and real-world process scenarios. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Os fungos fitopatogênicos habitantes do solo podem sobreviver por vários anos nesse ambiente por meio de estruturas de resistência, causando perdas em muitas culturas, por vezes, inviabilizando o pleno aproveitamento de vastas áreas agrícolas. O uso de materiais orgânicos no solo consorciado com a técnica de solarização propicia a retenção de compostos voláteis fungitóxicos emanados da rápida degradação dos materiais e que são letais a vários fitopatógenos. O objetivo deste experimento foi à prospecção de novos materiais orgânicos que produzissem voláteis fungitóxicos capazes de controlar fungos fitopatogênicos habitantes do solo, em condições de associação com a simulação da técnica de solarização (microcosmo). Portanto, o presente trabalho consistiu de seis tratamentos (Solarizado; Solarizado+Brócolos; Solarizado+Eucalipto; Solarizado+Mamona; Solarizado+Mandioca e Laboratório) e cinco períodos (0, 7, 14, 21 e 28 dias) para avaliar a sobrevivência de quatro fungos de solo (Fusarium oxysporum f. sp. lycopersici Raça 2; Macrophomina phaseolina; Rhizoctonia solani AG-4 HGI e Sclerotium rolfsii). em cada uma das duas câmaras de vidro (microcosmo) por dia avaliado continha uma bolsa de náilon contendo as estruturas de resistência de cada fitopatógeno. Estruturas dos fitopatógenos foram mantidas também em condições de laboratório como referencial de controle. Todos os materiais quando associados à simulação da solarização propiciaram o controle de todos os fitopatógenos estudados, entretanto, foi observado variação no controle dos fungos. O tratamento que apenas simulou a solarização não controlou nenhum fitopatógeno.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In waterlogged environments of the upper Amazon basin, organic matter is a major driver in the podzolisation of clay-depleted laterites, especially through its ability to weather clay minerals and chelate metals. Its structure in eight organic-rich samples collected at the margin and in the centre of the podzolic area of a soil sequence was investigated. The samples illustrate the main steps in the development of waterlogged podzols and belong either to eluviated topsoil A horizons or to illuviated subsoil Bhs, Bh and 2BCs horizons. Organic matter micromorphology was described, and the overall molecular structure of their clay size fractions was assessed using Fourier transform infrared (FTIR) spectroscopy and cross polarization/magic angle spinning (CP/MAS) C-13 nuclear magnetic resonance (NMR). Organic features of the horizons strongly vary both vertically and laterally in the sequence. Topsoil A horizons are dominated by organic residues juxtaposed to clean sands with a major aliphatic contribution. In the subsoil, numerous coatings, characteristic of illuviation processes, are observed in the following horizons: (i) At the margin and bottom parts of the podzolic area, dark brown organic compounds of low aromacity with abundant oxygen-containing groups accumulate in Bhs and 2BCs horizons. Their spectroscopic features agree with the observation of cracked coatings in 2BCs and the presence of organometallic complexes, whose abundance decreases towards low lying positions. (ii) By contrast, black organic compounds of high aromacity with few chelating functions accumulate as coatings and infills in the overlying sandy Bh horizon of well-expressed waterlogged podzols. (c) 2008 Elsevier B.V. All rights reserved.