34 resultados para SELF-CONSISTENT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We perform a self-consistent relativistic RPA calculation for the isobaric analogue and Gamow-Teller resonances based on relativistic mean field theory results for the ground states of 48Ca, 90Zr and 208Pb. We use the parameter set NL1 for the σ, ω and ρ mesons, and experimental values for the pion and nucleon. An extra parameter, related to the intensity of the contact term in the pion-exchange interaction, is crucial to reproduce the latter resonances. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Holstein-Anderson impurity model is presented. Both the electronic states and the vibrational mode associated to the impurity are treated within a novel 'entangled' effective medium approach (a non-perturbative, self-consistent method). Vibronic spectra and susceptibilities are readily computed for the symmetric, half-filled case. As expected, charge fluctuations (electron-phonon interactions) depletes the magnetic response (susceptibility) when compared to the no-phonon case. © 2001 Published by Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A combined theoretical and experimental study to elucidate the molecular mechanism for the Grob fragmentation of different (N-halo)-2-amino cyclocarboxylates with the nitrogen atom in exocyclic position: (N-Cl)-2-amino cyclopropanecarboxylate (1), (N-Cl)-2-amino cyclobutanecarboxylate (2), (N-Cl)-2-amino cyclopentanecarboxylate (3) and (N-Cl)-2-amino cyclohexanecarboxylate (4), and the corresponding acyclic compounds, (N-Cl)-2-amino isobutyric acid (A), (N-Cl)-2-amino butyric acid (B), has been carried out. The kinetics of decomposition for these compounds and related bromine derivatives were experimentally determined by conventional and stopped-flow UV spectrophotometry. The reaction products have been analyzed by GC and spectrophotometry. Theoretical analysis is based in the localization of stationary points (reactants and transition structures) on the potential energy surface. Calculations were carried out at B3LYP/6-31+G* and MP2/6-31+G* computing methods in the gas phase, while solvent effects have been included by means the self-consistent reaction field theory, PCM continuum model, at MP2/6-31+G* and MP4/6-31+G*//MP2/6-31+G* calculation levels. Based on both experimental and theoretical results, the different Grob fragmentation processes show a global synchronicity index close to 0.9, corresponding to a nearly concerted process. At the TSs, the N-Cl bond breaking is more advanced than the C-C cleavage process. An antiperiplanar configuration of these bonds is reached at the TSs, and this geometrical arrangement is the key factor governing the decomposition. In the case of 1 and 2 the ring strain prevents this spatial disposition, leading to a larger value of the activation barrier. Natural population analysis shows that the polarization of the N-Cl and C-C bonds along the bond-breaking process can be considered the driving force for the decomposition and that a negative charge flows from the carboxylate group to the chlorine atom to assist the reaction pathway. A comparison of theoretical and experimental results shows the relevance of calculation level and the inclusion of solvent effects for determining accurate unimolecular rate coefficients for the decomposition process. © 2002 Published by Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The scattering of charmed mesons on nucleons is investigated within a chiral quark model inspired on the QCD Hamiltonian in Coulomb gauge. The microscopic model incorporates a longitudinal Coulomb confining interaction derived from a self-consistent quasi-particle approximation to the QCD vacuum, and a traverse hyperfine interaction motivated from lattice simulations of QCD in Coulomb gauge. From the microscopic interactions at the quark level, effective meson-baryon interactions are derived using a mapping formalism that leads to quark-Born diagrams. As an application, the total cross-section of heavy-light D-mesons scattering on nucleons is estimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The self-assembly of short amino acid chains appears to be one of the most promising strategies for the fabrication of nanostructures. Their solubility in water and the possibility of chemical modification by targeting the amino or carboxyl terminus give peptide-based nanostructures several advantages over carbon nanotube nanostructures. However, because these systems are synthesized in aqueous solution, a deeper understanding is needed on the effects of water especially with respect to the electronic, structural and transport properties. In this work, the electronic properties of l-diphenylalanine nanotubes (FF-NTs) have been studied using the Self-Consistent Charge Density-Functional-based Tight-Binding method augmented with dispersion interaction. The presence of water molecules in the central hydrophilic channel and their interaction with the nanostructures are addressed. We demonstrate that the presence of water leads to significant changes in the electronic properties of these systems decreasing the band gap which can lead to an increase in the hopping probability and the conductivity. © the Owner Societies 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Models of different degrees of complexity are found in the literature for the estimation of lightning striking distances and attractive radius of objects and structures. However, besides the oversimplifications of the physical nature of the lightning discharge on which most of them are based, till recently the tridimensional structure configuration could not be considered. This is an important limitation, as edges and other details of the object affect the electric field and, consequently, the upward leader initiation. Within this context, the Self-consistent leader initiation and propagation model (SLIM) proposed by Becerra and Cooray is state-of-the-art leader inception and propagation leader model based on the physics of leader discharges which enables the tridimensional geometry of the structure to be taken into account. In this paper, the model is used for estimating the striking distance and attractive radius of power transmission lines. The results are compared with those obtained from the electrogeometric and Eriksson's models. © 2003-2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An a-C:H thin film deposited by plasma immersion ion implantation and deposition on alloy steel (16MnCr5) was analyzed using a self-consistent ion beam analysis technique.In the self-consistent analysis, the results of each individual technique are combined in a unique model, increasing confidence and reducing simulation errors.Self-consistent analysis, then, is able to improve the regular ion beam analysis since several analyses commonly used to process ion beam data still rely on handling each spectrum independently.The sample was analyzed by particle-induced x-ray emission (for trace elements), elastic backscattering spectrometry (for carbon), forward recoil spectrometry (for hydrogen) and Rutherford backscattering spectrometry (for film morphology).The self-consistent analysis provided reliable chemical information about the film, despite its heavy substrate.As a result, we could determine precisely the H/C ratio, contaminant concentration and some morphological characteristics of the film, such as roughness and discontinuities.© 2013 Elsevier B.V.All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fuel cells are a very promising solution to the problems of power generation and emission of pollutant to the environment, excellent to be used in stationary application and mobile application too. The high cost of production of these devices, mainly due to the use of noble metals as anode, is a major obstacle to massive production and deployment of this technology, however the use of intermetallic phases of platinum combined with other metals less noble has been evaluated as electrodes in order to minimize production costs and still being able to significantly improve the catalytic performance of the anode. The study of intermetallic phases, exclusively done by experimental techniques is not complete and demand that other methods need to be applied to a deeper understanding of the behavior geometric properties and the electronic structure of the material, to this end the use of computer simulation methods, which have proved appropriate for a broader understanding of the geometric and electronic properties of the materials involved, so far not so well understood.. The use of computational methods provides answers to explain the behavior of the materials and allows assessing whether the intermetallic may be a good electrode. In this research project was used the Quantum-ESPRESSO package, based on the DFT theory, which provides the self-consistent field calculations with great precision, calculations of the periodic systems interatomic force, and other post-processing calculations that points to a knowledge of the geometric and electronic properties of materials, which may be related to other properties of them, even the electrocatalytic. The electronic structure is determined from the optimized geometric structure of materials by analyzing the density of states (DOS) projected onto atomic orbital, which determines the influence of the electrocatalytic properties of the material... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)