47 resultados para Robust multidisciplinary
Resumo:
We demonstrate that a CERN LHC Higgs boson search in weak boson fusion production with subsequent decay to weak boson pairs is robust against extensions of the standard model or minimal supersymmetric standard model involving a large number of Higgs doublets. We also show that the transverse mass distribution provides unambiguous discrimination of a continuum Higgs signal from the standard model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present work, we quantify the fraction of trajectories that reach a specific region of the phase space when we vary a control parameter using two symplectic maps: one non-twist and another one twist. The two maps were studied with and without a robust torus. We compare the obtained patterns and we identify the effect of the robust torus on the dynamical transport. We show that the effect of meandering-like barriers loses importance in blocking the radial transport when the robust torus is present.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new concept of fault detection and isolation using robust observation for systems with random noises is presented. The method selects the parameters from components that may fault during the process and constructs well conditioned robust observers, considering sensors faults. To isolate component failures via robust observation, a bank of detection observers is constructed, where each observer is only sensitive to one specified component failure while robust to all other component failures.
Resumo:
Chronic pain is the major complaint of myofascial pain dysfunction syndrome (MPDS) and is a complex problem which involves physical, psychological and social aspects, the etiology of MPDS is multifactorial and the multidisciplinary approach is essential for differential diagnosis and for comprehensive treatment planning, In 1993, the Dental School of Piracicaba-UNICAMP, Brazil, opened a Center for Pain Studies (CPS), staffed by health care providers including, dentists, psychologists, physicians, physiotherapists and phonoaudiologists. The major aims of the CPS are to provide clinical care and to develop basic and applied research, Sixty-two MPDS patients had been admitted to the CPS by 1997, There were 60 females and 2 males, mean age -32.5 years, the mean duration of chronic pain was 48 months. Pain intensity and unpleasantness were measured employing the Visual Analogue Scale, the tendency to develop stress-related diseases was assessed by the Social Readjustment de Scale, There was a mean reduction of chronic pain of 69.89% and 71.78% relative to intensity and unpleasantness, respectively, the experience of clinical attendance at a multidisciplinary center showed the relevance of a team consisting of health care providers from different specialties with well-established aims, completely integrated and sensitive enough to understand the painful complaints of MPDS patients.
Resumo:
In some practical problems, for instance in the control systems for the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. New necessary and sufficient linear matrix inequalities (LMI) conditions for the design of state-derivative feedback for multi-input (MI) linear systems are proposed. For multi-input/multi-output (MIMO) linear time-invariant or time-varying plants, with or without uncertainties in their parameters, the proposed methods can include in the LMI-based control designs the specifications of the decay rate, bounds on the output peak, and bounds on the state-derivative feedback matrix K. These design procedures allow new specifications and also, they consider a broader class of plants than the related results available in the literature. The LMIs, when feasible, can be efficiently solved using convex programming techniques. Practical applications illustrate the efficiency of the proposed methods.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new concept of fault detection and isolation using robust observation for systems with random noises is presented. The method selects the parameters from components that may fault during the process and constructs well conditioned robust observers, considering sensors faults. To isolate component failures via robust observation, a bank of detection observers is constructed, where each observer is only sensitive to one specified component failure while robust to all other component failures.
Resumo:
Globalization of dairy cattle breeding has created a need for international sire proofs. Some early methods for converting proofs from one population to another are based on simple linear regression. An alternative robust regression method based on the t-distribution is presented, and maximum likelihood and Bayesian techniques for analysis are described, including the situation in which some proofs are missing. Procedures were used to investigate the relationship between Holstein sire proofs obtained by two Uruguayan genetic evaluation programs. The results suggest that conversion equations developed from data including only sires having proofs in both populations can lead to distorted results, relative to estimates obtained using techniques for incomplete data. There was evidence of non-normality of regression residuals, which constitutes an additional source of bias. A robust estimator may not solve all problems, but can provide simple conversion equations that are less sensitive to outlying proofs and to departures from assumptions.
Resumo:
Linear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a texicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.
Resumo:
The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft and aerospace structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. This article shows some steps that should be followed in the design of a smart structure. It is discussed: the optimal placement of actuators, the model reduction and the controller design through techniques involving linear matrix inequalities (LMI). It is considered as constraints in LMI: the decay rate, voltage input limitation in the actuators and bounded output peak (output energy). Two controllers robust to parametric variation are designed: the first one considers the actuator in non-optimal location and the second one the actuator is put in an optimal placement. The performance are compared and discussed. The simulations to illustrate the methodology are made with a cantilever beam with bonded piezoelectric actuators.