28 resultados para Rhamnolipids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa LBI isolated from petroleum-contaminated soil produced rhamnolipids (RLLBI) when cultivated on soapstock as the sole carbon source. HPLC-MS analysis of the purified culture supernatant identified 6 RL homologues (%): R-2 C-10 C-10 28.9; R-2 C-10 C-12:1 23.0; R-1 C-10 C-10 23.4; R-2 C-10 C-12 11.3; R-2 C-10 C-12 7.9; R-2 C-10 C-12 C-12 5.5. To assess the potential antimicrobial activity of the new rhamnolipid product, RLLBI, its physicochemical properties were studied. RLLBI had a surface tension of 24 mN m(-1) and an interfacial tension 1.31 mN m(-1); the cmc was 120 mg l(-1). RLLBI produced stable emulsions with hydrocarbons and vegetable oils. This product showed good antimicrobial behaviour against bacteria: MIC for Bacillus subtilis, Staphylococcus aureus and Proteus vulgaris was 8 mg l(-1), for Streptococcus faecalis 4 mg l(-1), and for Pseudomonas aeruginosa 32 mg l(-1). RLLBI was active against phytopathogenic fungal species, MIC values of 32 mg l(-1) being found against Penicillium, Alternaria, Gliocadium virens and Chaetonium globosum. Due to its physicochemical properties and antimicrobial behaviour, RLLBI could be used in bioremediation treatment and in the food, cosmetic and pharmaceutical industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new bacterial strain, was isolated from petroleum contaminated soil, identified and named Pseudomonas aeruginosa strain LBI. The new strain produced surface-active rhamnolipids by batch cultivation in a mineral salts medium with soapstock as the sole carbon source. Biosurfactant production increased after nitrogen depletion. The maximum rhamnolipid concentration, 15.9 g/l, was reached when it was incubated in a bioreactor with a constant K(L)a of 169.9 h(-1). (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil wastes were evaluated as alternative low-cost substrates for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. Wastes obtained from soybean, cottonseed, babassu, palm, and corn oil refinery were tested. The soybean soapstock waste was the best substrate, generating 11.7 g/L of rhamnolipids with a surface tension of 26.9 mN/m, a critical micelle concentration of 51.5 mg/L, and a production yield of 75%. The monorhamnolipid RhaC10C10 predominates when P. aeruginosa LBI was cultivated on hydrophobic substrates, whereas hydrophilic carbon sources form the dirhamnolipid Rha2C10C10 predominantly. © 2005 American Chemical Society and American Institute of Chemical Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of methods and products have been developed in order to eliminate or reduce the negative effects that hydrocarbons cause to the environment, including hydrophobic expanded vermiculite, used in oil residue filtering systems at gas stations. However, upon adsorbing organic compounds, the vermiculite is no longer used and is sent to landfills. The aim of the present study was to wash granular and powdered vermiculite containing oil lubricant in its pores with distilled water and solutions of 0.1% SDS surfactant and rhamnolipids, with the aim of removing the lubricant and the possibility of reusing the mineral. The greatest amount of lubricant removal was obtained through washing with 0.1% SDS and both granulometric forms. This may be associated to the industrial purification received by the surfactant. However, the biosurfactant is ecologically more viable due to its low toxicity and ease of degradability. In the readsorption tests, greatest adsorption was obtained with the granular vermiculite washed in SDS solution. In order to enable the reuse of the mineral, further tests are needed to enhance desorption/adsorption efficiency.