282 resultados para Residual variance
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objetivou-se com esse trabalho comparar estimativas de componentes de variâncias obtidas por meio de modelos lineares mistos Gaussianos e Robustos, via Amostrador de Gibbs, em dados simulados. Foram simulados 50 arquivos de dados com 1.000 animais cada um, distribuídos em cinco gerações, em dois níveis de efeito fixo e três valores fenotípicos distintos para uma característica hipotética, com diferentes níveis de contaminação. Exceto para os dados sem contaminação, quando os modelos foram iguais, o modelo Robusto apresentou melhores estimativas da variância residual. As estimativas de herdabilidade foram semelhantes em todos os modelos, mas as análises de regressão mostraram que os valores genéticos preditos com uso do modelo Robusto foram mais próximos dos valores genéticos verdadeiros. Esses resultados sugerem que o modelo linear normal contaminado oferece uma alternativa flexível para estimação robusta em melhoramento genético animal.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dados de 4.959 lactações de 2.414 vacas da raça Pardo-Suíça, filhas de 70 reprodutores, distribuídos em 51 rebanhos, foram utilizados para se estimar o componente de variância para a interação reprodutor x rebanho das produções de leite e de gordura e verificar o efeito desta interação sobre a avaliação genética dos reprodutores, por meio de modelos que diferiam na presença e ausência do termo de interação. As produções de leite e de gordura foram ajustadas para duas ordenhas diárias, 305 dias de lactação e idade adulta da vaca. O teste da razão de verossimilhança foi utilizado na verificação da efetividade da inclusão da interação no modelo. As médias das produções de leite e de gordura foram 6085,79 ± 1629,73 kg e 225,61 ± 60,44 kg, respectivamente. A proporção da variância total decorrente da interação reprodutor x rebanho foi 0,4%, para a produção de leite, e 1%, para a produção de gordura. A estimativa de herdabilidade foi 0,38, para a produção de leite, utilizando-se ambos os modelos, e reduziu de 0,40 para 0,39, para a produção de gordura, quando o modelo com interação foi considerado. A função de verossimilhança aumentou significativamente com a inclusão da interação no modelo. A correlação de Spearman foi próxima de um para ambas as características, quando todos os reprodutores foram considerados. Houve redução de 1% na estimativa de acurácia dos valores genéticos preditos para ambas as características, porém, a correlação de Pearson estimada entre as acurácias obtidas para cada modelo estudado foi próxima à unidade. A interaçãoreprodutor x rebanho não afetou as estimativas de componentes de variâncias genética e residual e a ordem de classificação dos reprodutores para ambas as características.
Resumo:
Descriptive herd variables (DVHE) were used to explain genotype by environment interactions (G x E) for milk yield (MY) in Brazilian and Colombian production environments and to develop a herd-cluster model to estimate covariance components and genetic parameters for each herd environment group. Data consisted of 180,522 lactation records of 94,558 Holstein cows from 937 Brazilian and 400 Colombian herds. Herds in both countries were jointly grouped in thirds according to 8 DVHE: production level, phenotypic variability, age at first calving, calving interval, percentage of imported semen, lactation length, and herd size. For each DVHE, REML bivariate animal model analyses were used to estimate genetic correlations for MY between upper and lower thirds of the data. Based on estimates of genetic correlations, weights were assigned to each DVHE to group herds in a cluster analysis using the FASTCLUS procedure in SAS. Three clusters were defined, and genetic and residual variance components were heterogeneous among herd clusters. Estimates of heritability in clusters 1 and 3 were 0.28 and 0.29, respectively, but the estimate was larger (0.39) in Cluster 2. The genetic correlations of MY from different clusters ranged from 0.89 to 0.97. The herd-cluster model based on DVHE properly takes into account G x E by grouping similar environments accordingly and seems to be an alternative to simply considering country borders to distinguish between environments.
Resumo:
The objective of this study was to determine whether there is a genotype by environment interaction (GxE) for dairy buffaloes in Brazil and Colombia. The (co)variance components were estimated by using a bi-trait repeatability animal model with the REML method. Each trait consisted in the milk yield obtained in both countries. Contemporary group (herd, year and season of parity) and age at parity (linear and quadratic covariate) fixed effects, along with the additive genetic, permanent environment, and the residual random effects were included in the model. Genetic, permanent environmental and residual variance and heritabilities were different for both countries. The genetic correlations for milk yield between Brazil and Colombia were low (between 0.10 and 0.13), indicating a GxE interaction between both countries. Knowing that this interaction influences the genetic progress of buffalo populations in Brazil and Colombia, we recommend choosing sires tested in the country they will be used, along with conducting joint genetic evaluations that consider GxE interaction effects.
Resumo:
Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.
Resumo:
The objectives of the present study were to estimate genetic parameters of monthly test-day milk yield (TDMY) of the first lactation of Brazilian Holstein cows using random regression (RR), and to compare the genetic gains for milk production and persistency, derived from RR models, using eigenvector indices and selection indices that did not consider eigenvectors. The data set contained monthly TDMY of 3,543 first lactations of Brazilian Holstein cows calving between 1994 and 2011. The RR model included the fixed effect of the contemporary group (herd-month-year of test days), the covariate calving age (linear and quadratic effects), and a fourth-order regression on Legendre orthogonal polynomials of days in milk (DIM) to model the population-based mean curve. Additive genetic and nongenetic animal effects were fit as RR with 4 classes of residual variance random effect. Eigenvector indices based on the additive genetic RR covariance matrix were used to evaluate the genetic gains of milk yield and persistency compared with the traditional selection index (selection index based on breeding values of milk yield until 305 DIM). The heritability estimates for monthly TDMY ranged from 0.12 ± 0.04 to 0.31 ± 0.04. The estimates of additive genetic and nongenetic animal effects correlation were close to 1 at adjacent monthly TDMY, with a tendency to diminish as the time between DIM classes increased. The first eigenvector was related to the increase of the genetic response of the milk yield and the second eigenvector was related to the increase of the genetic gains of the persistency but it contributed to decrease the genetic gains for total milk yield. Therefore, using this eigenvector to improve persistency will not contribute to change the shape of genetic curve pattern. If the breeding goal is to improve milk production and persistency, complete sequential eigenvector indices (selection indices composite with all eigenvectors) could be used with higher economic values for persistency. However, if the breeding goal is to improve only milk yield, the traditional selection index is indicated. © 2013 American Dairy Science Association.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV