20 resultados para Redox ionic liquid
Kinetics and mechanism of the induced redox reaction of [Ni(cyclam)](2+) promoted by SO5 center dot-
Resumo:
Oxidation of [Ni(cyclam)](2+), cyclam = 1,4,8,11-tetraazacyclotetradecane, accelerated by sulfur dioxide, was studied spectrophotometrically by following the formation of [Ni(cyclam)](3+) under the conditions: [Ni(cyclam)](2+) = 6.0 x 10(-3) M; initial [Ni(cyclam)](3+) = 8.0 x 10(-6) M; [cyclam] = 6.0 x 10(-3) M; [SO2] = (1.0-5.0) x 10(-4) M and 1.0 M perchloric acid in oxygen saturated solutions at 25.0 degrees C and ionic strength = 1.0 M. The oxidation reaction exhibits autocatalytic behavior in which the induction period depends on the initial Ni(III) concentration. A kinetic study of the reduction of Ni(III) by SO2 under anaerobic conditions, and the oxidation of Ni(II), showed that the rate-determining step involves reduction of Ni(III) by SO2 to produce the SO3.- radical, which rapidly reacts with dissolved oxygen to produce SO5.- and rapidly oxidizes Ni(II). The results clearly show a redox cycling process which depends on the balance of SO2 and oxygen concentrations in solution.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A novel, simple, rapid and eco-friendly method based on dispersive liquid-liquid microextraction using a bromosolvent was developed to determine six estrogenic mycotoxins (zearalenone, zearalanone, alpha-zearalanol, beta-zearalanol, alpha-zearalenol and beta-zearalenol) in water samples by liquid chromatography-electrospray ionization tandem mass spectrometry in the negative mode (LC-ESI-MS/MS). The optimal conditions for this method include the use of 100 mu L bromocyclohexane as an extraction solvent (using a non-dispersion solvent), 10 mL of aqueous sample (adjusted to pH 4), a vortex extraction time of 2 min, centrifugation for 10 min at 3500 rpm and no ionic strength adjustment. The calibration function was linear and was verified by applying the Mandel fitting test with a 95% confidence level. No matrix effect was observed. According to the relative standard deviations (RSDs), the precision was better than 13% for the repeatability and intermediate precision. The average recoveries of the spiked compounds ranged from 81 to 118%. The method limits of detection (LOD) and quantification (LOQ) considering a 125-fold pre-concentration step were 4-20 and 8-40 ng L-1, respectively. Next, the method was applied to the analysis of the environmental aqueous samples, demonstrating the presence of beta-zearalanol and zearalanone in the river water samples. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper studies attained microstructures and reactive mechanisms involved in vacuum infiltration of copper aluminate preforms with liquid aluminium. At high temperatures, under vacuum, the inherent alumina film enveloping the metal is overcome, and aluminium is expected to reduce copper aluminate, rendering alumina and copper. Under this approach, copper aluminate toils as a controlled infiltration path for aluminium, resulting in reactive wetting and infiltration of the preforms. Ceramic preforms containing a mixture of Al2O3 and CuAl2O4 were infiltrated with aluminium under distinct vacuum levels and temperatures, and the resulting reaction and infiltration behaviour is discussed. Copper aluminates stability ranges depend on vacuum level and oxygen partial pressure, which determine both CuAl2O4 and CuAlO2 ability for liquid aluminium infiltration. At 1100 °C and 0.76 atm vacuum level CuAl2O4 is stable, indicating pO2 above 0.11 atm. Reactive infiltration is achieved via reaction between aluminium and CuAl2O4; however, fast formation of an alumina film blocking liquid aluminium wicking results in incipient infiltration. At 1000 °C and 3.8 × 10−7 atm vacuum level, CuAlO2 decomposes to Cu and Al2O3 indicating a pO2 below 6.0 × 10−7 atm; infiltration of the ceramic is hindered by the non-wetting behaviour of the resulting metal alloy. At 1000 °C and 1.9 × 10−6 atm vacuum level CuAlO2 is stable, indicating pO2 above 6.0 × 10−7 atm. Extensive infiltration is achieved via redox reaction between aluminium and CuAlO2, rendering a microstructure characterised by uniform distribution of alumina particles amid an aluminium matrix. This work evidences that liquid aluminium infiltration upon copper aluminate-rich preforms is a feasible route to produce Al–matrix alumina-reinforced composites. The associated reduction reaction renders alumina, as fine particulate composite reinforcements, and copper, which dissolves in liquid aluminium contributing as a matrix strengthener.