83 resultados para Recombinant Protein


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrolysis of phospholipids by Group II phospholipase A(2) enzymes involves a nucleophilic attack on the sn-2 ester bond by the His48 residue and stabilization of the reaction intermediate by a Ca2+ ion cofactor bound to the Asp49 residue in the protein active site region, Bothropstoxin-I (BthTX-I) is a PLA, variant present in the venom of the snake Bothrops jararacussu which shows a Asp49 to Lys substitution and which lacks hydrolytic activity yet damages artificial membranes by a noncatalytic Ca2+-independent mechanism. In order to better characterize this unusual mechanism of membrane damage, we have established an expression system for BthTX-I in Escherichia coli. The DNA-coding sequence for BthTX-I was subcloned into the vector pET11-d, and the BthTX-I was expressed as inclusion bodies in E, coli BL21(DE3). The native BthTX-I contains seven disulfide bonds, and a straightforward protocol has been developed to refold the recombinant protein at high protein concentration in the presence of surfactants using a size-exclusion chromatography matrix. After refolding, recovery yields of 2.5% (corresponding to 4-5 mg of refolded recombinant BthTX-I per liter of bacterial culture) were routinely obtained. After refolding, identical fluorescent and circular dichroism spectra were obtained for the recombinant BthTX-I compared to those of the native protein. Furthermore, the native and refolded recombinant protein demonstrated identical membrane-damaging properties as evaluated by measuring the release of an entrapped fluorescent marker from liposomes, (C) 2001 Academic Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SMase I, a 32 kDa sphingomyelinase found in Loxosceles laeta venom, is responsible for the major pathological effects of spider envenomation. This toxin has been cloned and functionally expressed as a fusion protein containing a 6 x His tag at its N-terminus to yield a 33 kDa protein [Fernandes-Pedrosa et al. (2002), Biochem. Biophys. Res. Commun. 298, 638 - 645]. The recombinant protein possesses all the biological properties ascribed to the whole L. laeta venom, including dermonecrotic and complement-dependent haemolytic activities. Dynamic light-scattering experiments conducted at 291 K demonstrate that the sample possesses a monomodal distribution, with a hydrodynamic radius of 3.57 nm. L. laeta SMase I was crystallized by the hanging-drop vapour-diffusion technique using the sparse-matrix method. Single crystals were obtained using a buffer solution consisting of 0.08 M HEPES and 0.9 M trisodium citrate, which was titrated to pH 7.5 using 0.25 M sodium hydroxide. Complete three-dimensional diffraction data were collected to 1.8 Angstrom at the Laboratorio Nacional de Luz Sincrotron (LNLS, Campinas, Brazil). The crystals belong to the hexagonal system ( space group P6(1) or P6(5)), with unit-cell parameters a = b = 140.6, c = 113.6 Angstrom. A search for heavy-atom derivatives has been initiated and elucidation of the crystal structure is currently in progress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unlike the muscle protein, alpha-tropomyosin expressed in Escherichia coli does not bind actin, does not exhibit head-to-tail polymerization, and does not inhibit actomyosin ATPase activity in the absence of troponin. The only chemical difference between recombinant and muscle tropomyosins is that the first methionine is not acetylated in the recombinant protein (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). We expressed three fusion tropomyosins in E. coli with 2, 3, and 17 amino acids fused to its amino terminus. Ah three fusions restored actin binding, head-to-tail polymerization, and the capacity to inhibit the actomyosin ATPase to these unacetylated tropomyosins. Unlike larger fusions, the small fusions of 2 and 3 amino acids do not interfere with regulatory function. Therefore the presence of a fused dipeptide at the amino terminus of unacetylated tropomyosin is sufficient to replace the function of the N-acetyl group present in muscle tropomyosin. A structural interpretation for the function of the acetyl group, based on our results and the coiled coil structure of tropomyosin, is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for human PNP causes T-cell deficiency as the major physiological defect. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant tissue rejection, psoriasis, rheumatoid arthritis, lupus, and T-cell lymphomas. Human PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation. In addition, bacterial PNP has been used as reactant in a fast and sensitive spectrophotometric method that allows both quantitation of inorganic phosphate (Pi) and continuous assay of reactions that generate P i such as those catalyzed by ATPases and GTPases. Human PNP may therefore be an important biotechnological tool for P i detection. However, low expression of human PNP in bacterial hosts, protein purification protocols involving many steps, and low protein yields represent technical obstacles to be overcome if human PNP is to be used in either high-throughput drug screening or as a reagent in an affordable P i detection method. Here, we describe PCR amplification of human PNP from a liver cDNA library, cloning, expression in Escherichia coli host, purification, and activity measurement of homogeneous enzyme. Human PNP represented approximately 42% of total soluble cell proteins with no induction being necessary to express the target protein. Enzyme activity measurements demonstrated a 707-fold increase in specific activity of cloned human PNP as compared to control. Purification of cloned human PNP was achieved by a two-step purification protocol, yielding 48 mg homogeneous enzyme from 1 L cell culture, with a specific activity value of 80 U mg -1. © 2002 Elsevier Science (USA). All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality due to a bacterial pathogen. According to the 2004 Global TB Control Report of the World Health Organization, there are 300,000 new cases per year of multi-drug resistant strains (MDR-TB), defined as resistant to isoniazid and rifampicin, and 79% of MDR-TB cases are now super strains, resistant to at least three of the four main drugs used to treat TB. Thus there is a need for the development of effective new agents to treat TB. The shikimate pathway is an attractive target for the development of antimycobacterial agents because it has been shown to be essential for the viability of M. tuberculosis, but absent from mammals. The M. tuberculosis aroG-encoded 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (mtDAHPS) catalyzes the first committed step in this pathway. Here we describe the PCR amplification, cloning, and sequencing of aroG structural gene from M. tuberculosis H37Rv. The expression of recombinant mtDAHPS protein in the soluble form was obtained in Escherichia coli Rosetta-gami (DE3) host cells without IPTG induction. An approximately threefold purification protocol yielded homogeneous enzyme with a specific activity value of 0.47 U mg-1 under the experimental conditions used. Gel filtration chromatography results demonstrate that recombinant mtDAHPS is a pentamer in solution. The availability of homogeneous mtDAHPS will allow structural and kinetics studies to be performed aiming at antitubercular agents development. © 2004 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The retrovirus HTLV-1 is the etiological agent of the adult T-cell leukemia and HTLV-1 associated myelopathy/tropical spastic paraparesis. The proviral genome has 9,032 base pairs, showing regulatory and structural genes. The env gene encodes for the transmembrane glycoprotein gp 21. The development of methodologies for heterologous protein expression, as well as the acquisition of a cellular line that constituently expresses the recombinant, were the main goals of this work. The DNA fragment that encodes for gp 21 was amplified by nested-PCR and cloned into a pCR2.1-TOPO vector. After which, a sub-cloning was realized using the expressing vector pcDNA3.1+. The transfection of mammalian cells HEK 293 was performed transitorily and permanently. Production of the recombinant gp 21 was confirmed by flux cytometry experiments and the cell line producing protein will be used in immunogenicity assays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mycobacterium tuberculosis cmk gene, predicted to encode a CMP kinase (CMK), was cloned and expressed, and its product was purified to homogeneity. Steady-state kinetics confirmed that M. tuberculosis CMK is a monomer that preferentially phosphorylates CMP and dCMP by a sequential mechanism. A plausible role for CMK is discussed. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)