18 resultados para Reactions and Synthesis of Quinoxalines
Resumo:
The complex perovskite compound 0.9PbMg 1/3Nb 2/3O 3-0.1PbTiO 3 is one of the most promising relaxor ceramic because the addition of lead titanate increases T m, by about 5°C/mol% from intrinsic T m value for pure PMN (near -7 to -15°C). A Ti-modified columbite precursor was used to prepare PMN-PT powders containing single perovskite phase. This variation on columbite route includes Ti insertion in MgNb 2O 6 orthorhombic structure so that individual PT synthesis becomes unnecessary. Furthermore, effects of Li additive on columbite and PMN-PT structures were studied by XRD to verify the phase formation at each processing step. XRD data were also used for the structural refinement by Rietveld method. The additive acts increasing columbite powders crystallinity, and the amount of perovskite phase was insignificantly decreased by lithium addition. By SEM micrographs it was observed that Li presence in PMN-PT powders leads to the formation of rounded primary particles and for lmol% of additive, the grain size is not changed, different from when this concentration is enhanced to 2mol%.
Resumo:
The synthesis of a series of omega-hydroxyfatty acid (omega-OHFA) monomers and their methyl ester derivatives (Me-omega-OHFA) from mono-unsaturated fatty acids and alcohols via ozonolysis-reduction/crossmetathesis reactions is described. Melt polycondensation of the monomers yielded thermoplastic poly(omega-hydroxyfatty acid)s [-(CH2)(n)-COO-](x) with medium (n = 8 and 12) and long (n = 17) repeating monomer units. The omega-OHFAs and Me-omega-OHFAs were all obtained in good yield (>= 80%) and purity (>= 97%) as established by H-1 NMR, Fourier Transform infra-red spectroscopy (FT-IR), mass spectroscopy (ESI-MS) and high performance liquid chromatography (HPLC) analyses. The average molecular size (M-n) and distribution (PDI) of the poly(omega-hydroxyfatty acid)s (P(omega-OHFA)s) and poly(omega-hydroxyfatty ester) s (P(Me-omega-OHFA) s) as determined by GPC varied with organo-metallic Ti(IV) isopropoxide [Ti(OiPr)(4)] polycondensation catalyst amount, reaction time and temperature. An optimization of the polymerization process provided P(omega-OHFA) s and P(Me-omega-OHFA) s with M-n and PDI values desirable for high end applications. Co-polymerization of the long chain (n = 12) and medium chain (n = 8) Me-omega-OHFAs by melt polycondensation yielded poly(omega-hydroxy tridecanoate/omega-hydroxy nonanoate) random co-polyesters (M-n = 11000- 18500 g mol(-1)) with varying molar compositions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)