27 resultados para Radio receivers.
Resumo:
The doubly labelled water method (DLW) is widely used to measure field metabolic rate (FMR), but it has some limitations. Here, we validate an innovative technique for measuring FMR by comparing the turnover of isotopic rubidium (86Rb kb) with DLW depletion and the rate of CO2 production (V·co2) measured by flow-through respirometry (FTR) for two dunnart species (Marsupialia: Dasyuridae), Sminthopsis macroura (17 g) and Sminthopsis ooldea (10 g). The rate of metabolism as assessed by V·co2 (FTR) and 86Rb kb was significantly correlated for both species (S. macroura, r2 = 0·81, P = 1·19 × 10-5; S. ooldea, r2 = 0·63, P = 3·84 × 10-4), as was V·co2 from FTR and DLW for S. macroura (r2 = 0·43, P = 0·039), but not for S. ooldea (r2 = 0·29, P = 0·168). There was no relationship between V·co2 from DLW and 86Rb kb for either species (S. macroura r2 = 0·22, P = 0·169; S. ooldea r2 = 0·21, P = 0·253). We conclude that 86Rb kb provided useful estimates of metabolic rate for dunnarts. Meta-analysis provided different linear relationships between V·co2 and 86Rb kb for endotherms and ectotherms, suggesting different proportionalities between metabolic rate and 86Rb kb for different taxa. Understanding the mechanistic basis for this correlation might provide useful insights into the cause of these taxonomic differences in the proportionality. At present, it is essential that the relationship between metabolic rate and 86Rb kb be validated for each taxon of interest. The advantages of the 86Rb technique over DLW include lower equipment requirements and technical expertise, and the longer time span over which measurements can be made. The 86Rb method might be particularly useful for estimating FMR of groups for which the assumptions of the DLW technique are compromised (e.g. amphibians, diving species and fossorial species), and groups that are practically challenging for DLW studies (e.g. insects). © 2013 British Ecological Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Sociais - FFC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Scintillations are rapid fluctuations in the phase and amplitude of transionospheric radio signals which are caused by small-scale plasma density irregularities in the ionosphere. In the case of the Global Navigation Satellite System (GNSS) receivers, scintillation can cause cycle slips, degrade the positioning accuracy and, when severe enough, can even lead to a complete loss of signal lock. Thus, the required levels of availability, accuracy, integrity and reliability for the GNSS applications may not be met during scintillation occurrence; this poses a major threat to a large number of modern-day GNSS-based applications. The whole of Latin America, Brazil in particular, is located in one of the regions most affected by scintillations. These effects will be exacerbated during solar maxima, the next predicted for 2013. This paper presents initial results from a research work aimed to tackle ionospheric scintillation effects for GNSS users in Latin America. This research is a part of the CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America) project, co-funded by the EC Seventh Framework Program and supervised by the GNSS Supervisory Authority (GSA), which aims to develop and test ionospheric scintillation countermeasures to be implemented in multi-frequency, multi-constellation GNSS receivers.
Resumo:
Cognitive radio is a growing zone in wireless communication which offers an opening in complete utilization of incompetently used frequency spectrum: deprived of crafting interference for the primary (authorized) user, the secondary user is indorsed to use the frequency band. Though, scheming a model with the least interference produced by the secondary user for primary user is a perplexing job. In this study we proposed a transmission model based on error correcting codes dealing with a countable number of pairs of primary and secondary users. However, we obtain an effective utilization of spectrum by the transmission of the pairs of primary and secondary users' data through the linear codes with different given lengths. Due to the techniques of error correcting codes we developed a number of schemes regarding an appropriate bandwidth distribution in cognitive radio.
Resumo:
The frequency spectrums are inefficiently utilized and cognitive radio has been proposed for full utilization of these spectrums. The central idea of cognitive radio is to allow the secondary user to use the spectrum concurrently with the primary user with the compulsion of minimum interference. However, designing a model with minimum interference is a challenging task. In this paper, a transmission model based on cyclic generalized polynomial codes discussed in [2] and [15], is proposed for the improvement in utilization of spectrum. The proposed model assures a non interference data transmission of the primary and secondary users. Furthermore, analytical results are presented to show that the proposed model utilizes spectrum more efficiently as compared to traditional models.
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)