20 resultados para Quantum Dot
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Monte Carlo simulations of liquid formamide, N-methylformamide (MF), and N,N-dimethylformamide (DMF) have been performed in the isothermal and isobaric ensemble at 298 K and 1 atm, aiming to investigate the C-H ... O and N-H ... O hydrogen bonds. The interaction energy was calculated using the classical 6-12 Lennard-Jones pairwise potential plus a Coulomb term on a rigid six-site molecular model with the potential parameters being optimized in this work. Theoretical values obtained for heat of vaporization and liquid densities are in good agreement with the experimental data. The radial distribution function [RDF, g(r)] obtained compare well with R-X diffraction data available. The RDF and molecular mechanics (MM2) minimization show that the C-H ... O interaction has a significant role in the structure of the three liquids. These results are supported by ab initio calculations. This Interaction is particularly important in the structure of MF. The intensity of the N-H ... O hydrogen bond is greater in the MF than formamide. This could explain some anomalous properties verified in MF. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals.