170 resultados para Potato starch
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Several researches have been developed in order to verify the porosity effect over the ceramic material properties. The starch consolidation casting (SCC) allows to obtain porous ceramics by using starch as a binder and pore forming element. This work is intended to describe the porous mathematical behavior and the mechanical resistance at different commercial starch concentration. Ceramic samples were made with alumina and potato and corn starches. The slips were prepared with 10 to 50 wt% of starch. The specimens were characterized by apparent density measurements and three-point flexural test associated to Weibull statistics. Results indicated that the porosity showed a first-order exponential equation e(-x/c) increasing in both kinds of starches, so it was confirmed that the alumina ceramic porosity is related to the kind of starch used. The mechanical resistance is represented by a logarithmic expression R = A + B/1+10((Log(x0)-P)C).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
ADP-glucose pyrophosphorylase is the key regulatory enzyme in the biosynthesis of starch in plants and glycogen in bacteria. The enzyme from potato tuber is comprised of a regulatory subunit and a catalytic subunit and is present as a heterotetramer (alpha(2)beta(2)) the catalytic subunit from potato tuber (50 kDa) was crystallized in four different forms, two of which are suitable for structural studies. A tetragonal crystal form obtained in the presence of the substrate analog Cr-ATP diffracted to 2.2 Angstrom and belongs to space group P4(1) (or its enantiomorph), with unit-cell parameters a = b = 110.57, c = 190.14 Angstrom. A second crystal form obtained diffracted to 2.8 Angstrom and belongs to space group PZ, with unit-eel parameters a = 80.06, b = 138.84, c = 92.20 Angstrom, beta = 112.40 degrees. As this protein displays no significant homology to any currently known protein structure, a search for heavy-atom derivatives has been initiated.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A simplified procedure for the preparation of immobilized beta-amylase using non-purified extract from fresh sweet potato tubers is established in this paper, using differently activated agarose supports. Beta-amylase glutaraldehyde derivative was the preparation with best features, presenting improved temperature and pH stability and activity. The possibility of reusing the amylase was also shown, when this immobilized enzyme was fully active for five cycles of use. However, immobilization decreased enzyme activity to around 15%. This seems to be mainly due to diffusion limitations of the starch inside the pores of the biocatalyst particles. A fifteen-fold increase in the Km was noticed, while the decrease of Vmax was only 30% (10.1 U mg-1 protein and 7.03 U mg-1 protein for free and immobilized preparations, respectively). © 2013 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular alpha-amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress a-amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimutates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which Leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Effect of lactic acid, SO2, temperature, and their interactions were assessed on the dynamic steeping of a Brazilian dent corn (hybrid XL 606) to determine the ideal relationship among these variables to improve the wet-milling process for starch and corn by-products production. A 2x2x3 factorial experimental design was used with SO2 levels of 0.05 and 0.1% (w/v), lactic acid levels of 0 and 0.5% (v/v), and temperatures of 52, 60, and 68degreesC. Starch yield was used as deciding factor to choose the best treatment. Lactic acid added in the steep solution improved the starch yield by an average of 5.6 percentage points. SO2 was more available to break down the structural protein network at 0.1% than at the 0.05% level. Starch-gluten separation was difficult at 68degreesC. The lactic acid and SO2 concentrations and steeping temperatures for better starch recovery were 0.5, 0.1, and 52degreesC, respectively. The Intermittent Milling and Dynamic Steeping (IMDS) process produced, on average, 1.4% more starch than the conventional 36- hr steeping process. Protein in starch, oil content in germ, and germ damage were used as quality factors. Total steep time can be reduced from 36 hr for conventional wet-milling to 8 hr for the IMDS process.
Resumo:
The researches on the biological control of nematodes with nematophagous fungi has been intensified in recent years. The knowledge of the ecological conditions for the growth and sporulation of these fungi is a prerequisite for attainment of pure cultures needed to attend the demand for formulation of these organisms. With the objective to evaluate the micelial growth and sporulation of Arthrobotrys musiformis and A. oligospora in two environments (B.O.D at 25 +/- 1 degrees C and the environment of the Laboratory), 20 cultures media prepared with common materials found in the communities and industrialized media such as mycological agar, PDA and CMA were evaluated. The media were tested in Petri dishes, being the micelial growth of the fungi evaluated daily, during six days. The measured sporulation at the end of the experiment was done by estimation of the number of conidia/Petri dish. The experiment was carried out in a random design following a factorial arrangement of 20 x 2 x 2, corresponding to 20 media, two fungi and two environments, with five replicates. The variance analysis of the data evidenced significant statistical difference by the F Test, at 1% probability, among media x fungi x environment interaction. Fifty percent of the tested media provided the adequate micelial growth of A. musiformis and there was no statistical difference among them, namely: cassava meal (FM), sweet starch (PD), "corn meal agar" (CMA), oat in fine flakes (AFF), agar-water + dextrose (AA+D), mycological agar (AM), potato dextrose agar (BDA), meal of maize (FMI), flour of wheat (FT) and wheat for kibble (TK). In relation to A. oligospora, 75% of the tested media promoted the maximum growth of the fungus, which are: AFF, AM, FM, PD, CMA, AA+D, BDA, FT, TK, the water from the decoction of rice (AAZ), rice in grains (AZG), triturated rice (AZT), thread flour (FR), oats flour (FA), oats in thick flakes (AFG) and flour of maize (FU). In relation to the sporulation the media that had better role for A. musiformis, in decreasing order, were: FR, TK, AFG, BDA, FA, AFF, AM, FMI, AZT and FM, varying between 1,01 x 10(6) and 1,4 x 10(4) conidia/Petri dish. For the A. oligospora sporulation, the CMA medium provided the maximum level with an estimated average of 5,7 x 10(6) conidia/Petri dish. In the general, the best media for the micelial growth and sporulation of A. musiformis had also been the best for A. oligospora. However, some that had been the best for the A. oligospora did not had been efficient for the micelial growth or the sporulation of A. musiformis, indicating that the isolate of A. musiformis in case is more demanding than that A. oligospora one. The evidences from the study indicate that, in Jaboticabal, São Paulo state, the growth and the sporulation of these fungi do not demand special chambers. Some adaptations of an environment at the laboratory, enough to obliterate the light are sufficient.
Resumo:
European corn borer (ECB) [Ostrinia nubilalis (Hubner)] (Lepidoptera: Crambidae) is known to infest Irish potato (Solanum tuberosum L.) but only causes economic damage during the first generation in East Coast potato producing areas. However, in Nebraska, second generation ECB infest potato plants during the bulking period and may reduce yield and/or potato quality. Experiments were conducted in 2001, 2002, and 2003 to examine physiological and yield effects of second generation ECB injury to potato in Nebraska. Pike, Atlantic, and three Frito Lay proprietary varieties (FL1867, FL1879, and FL1833) were used. Experimental plots were infested with four ECB egg masses per plant to simulate ECB infestation by second-generation larvae; controls received no egg masses. Photosynthetic rates, tuber weights, tuber size grades, solids, and fry quality were measured. Potato plants with ECB infestation had significantly reduced photosynthetic rates on ECB-infested stems and on uninfested stems on the same plant when larvae were in the fifth instar. When insects were in the fourth instar, photosynthetic rates were reduced only on ECB-infested stems. In 2001, ECB infestation reduced the average mass of large tubers and increased the amount of small tubers in FL1867 and FL1879. In 2002, significant yield reductions were not observed. Across both years, ECB-infested plots produced fewer large (65- to 100-mm diam.) tubers than control plots. Other tuber properties and chip qualities were unaffected. This study indicates that second generation ECB infestation of approximately 30% infested plants results in economic loss for some chipping varieties and affects tuber bulking. In contrast to east coast growers, Midwest potato farmers must be concerned with second generation ECB.
Resumo:
Silicon has beneficial effects on many crops, mainly under biotic and abiotic stresses. Silicon can affect biochemical, physiological, and photosynthetic processes and, consequently, alleviates drought stress. However, the effects of Si on potato (Solanum tuberosum L.) plants under drought stress are still unknown. The objective of this study was to evaluate the effect of Si supply on some biochemical characteristics and yield of potato tubers, either exposed or not exposed to drought stress. The experiment was conducted in pots containing 50 dm(3) of a Typic Acrortox soil (33% clay, 4% silt, and 63% sand). The treatments consisted of the absence or presence of Si application (0 and 284.4 mg dm(-3)), through soil amelioration with dolomitic lime and Ca and Mg silicate, and in the absence or presence of water deficit (-0.020 MPa and -0.050 MPa soil water potential, respectively), with eight replications. Silicon application and water deficit resulted in the greatest Si concentration in potato leaves. Proline concentrations increased under lower water availability and higher Si availability in the soil, which indicates that Si may be associated with plant osmotic adjustment. Water deficit and Si application decreased total sugars and soluble proteins concentrations in the leaves. Silicon application reduced stalk lodging and increased mean tuber weight and, consequently, tuber yield, especially in the absence of water stress.